test
This is a sentence-transformers model finetuned from sentence-transformers/all-distilroberta-v1 on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-distilroberta-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Xavarary/mpnet-base-all-medium-triplet")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.0779 |
| dot_accuracy | 0.9221 |
| manhattan_accuracy | 0.0783 |
| euclidean_accuracy | 0.0779 |
| max_accuracy | 0.0783 |
Triplet
- Dataset:
all-nli-dev - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.0921 |
| dot_accuracy | 0.9079 |
| manhattan_accuracy | 0.097 |
| euclidean_accuracy | 0.0921 |
| max_accuracy | 0.097 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.Two woman are holding packages.The men are fighting outside a deli.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.Two kids in numbered jerseys wash their hands.Two kids in jackets walk to school.A man selling donuts to a customer during a world exhibition event held in the city of AngelesA man selling donuts to a customer.A woman drinks her coffee in a small cafe. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falsefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | all-nli-dev_max_accuracy |
|---|---|---|---|
| 0 | 0 | - | 0.0783 |
| 0.016 | 100 | 0.9326 | - |
| 0.032 | 200 | 0.7562 | - |
| 0.048 | 300 | 1.0227 | - |
| 0.064 | 400 | 0.6815 | - |
| 0.08 | 500 | 0.7091 | - |
| 0.096 | 600 | 0.8731 | - |
| 0.112 | 700 | 0.8263 | - |
| 0.128 | 800 | 0.9691 | - |
| 0.144 | 900 | 0.9814 | - |
| 0.16 | 1000 | 0.8569 | - |
| 0.176 | 1100 | 0.9649 | - |
| 0.192 | 1200 | 0.8079 | - |
| 0.208 | 1300 | 0.6868 | - |
| 0.224 | 1400 | 0.6749 | - |
| 0.24 | 1500 | 0.6968 | - |
| 0.256 | 1600 | 0.5537 | - |
| 0.272 | 1700 | 0.7242 | - |
| 0.288 | 1800 | 0.7363 | - |
| 0.304 | 1900 | 0.5771 | - |
| 0.32 | 2000 | 0.5519 | - |
| 0.336 | 2100 | 0.4775 | - |
| 0.352 | 2200 | 0.4376 | - |
| 0.368 | 2300 | 0.6341 | - |
| 0.384 | 2400 | 0.5207 | - |
| 0.4 | 2500 | 0.5106 | - |
| 0.416 | 2600 | 0.4666 | - |
| 0.432 | 2700 | 0.8047 | - |
| 0.448 | 2800 | 0.6638 | - |
| 0.464 | 2900 | 0.6554 | - |
| 0.48 | 3000 | 0.6055 | - |
| 0.496 | 3100 | 0.5947 | - |
| 0.512 | 3200 | 0.4352 | - |
| 0.528 | 3300 | 0.4421 | - |
| 0.544 | 3400 | 0.4187 | - |
| 0.56 | 3500 | 0.4056 | - |
| 0.576 | 3600 | 0.4046 | - |
| 0.592 | 3700 | 0.3629 | - |
| 0.608 | 3800 | 0.3428 | - |
| 0.624 | 3900 | 0.362 | - |
| 0.64 | 4000 | 0.5858 | - |
| 0.656 | 4100 | 0.7457 | - |
| 0.672 | 4200 | 0.7033 | - |
| 0.688 | 4300 | 0.5343 | - |
| 0.704 | 4400 | 0.4125 | - |
| 0.72 | 4500 | 0.4567 | - |
| 0.736 | 4600 | 0.4921 | - |
| 0.752 | 4700 | 0.5264 | - |
| 0.768 | 4800 | 0.4883 | - |
| 0.784 | 4900 | 0.4231 | - |
| 0.8 | 5000 | 0.5048 | - |
| 0.816 | 5100 | 0.4044 | - |
| 0.832 | 5200 | 0.5102 | - |
| 0.848 | 5300 | 0.3751 | - |
| 0.864 | 5400 | 0.5139 | - |
| 0.88 | 5500 | 0.4439 | - |
| 0.896 | 5600 | 0.3999 | - |
| 0.912 | 5700 | 0.4932 | - |
| 0.928 | 5800 | 0.4349 | - |
| 0.944 | 5900 | 0.6022 | - |
| 0.96 | 6000 | 0.5906 | - |
| 0.976 | 6100 | 0.5021 | - |
| 0.992 | 6200 | 0.0002 | - |
| 1.0 | 6250 | - | 0.0970 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.1.1
- Transformers: 4.38.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 61
Model tree for Xavarary/mpnet-base-all-medium-triplet
Base model
sentence-transformers/all-distilroberta-v1Dataset used to train Xavarary/mpnet-base-all-medium-triplet
Evaluation results
- Cosine Accuracy on all nli devself-reported0.078
- Dot Accuracy on all nli devself-reported0.922
- Manhattan Accuracy on all nli devself-reported0.078
- Euclidean Accuracy on all nli devself-reported0.078
- Max Accuracy on all nli devself-reported0.078
- Cosine Accuracy on all nli devself-reported0.092
- Dot Accuracy on all nli devself-reported0.908
- Manhattan Accuracy on all nli devself-reported0.097
- Euclidean Accuracy on all nli devself-reported0.092
- Max Accuracy on all nli devself-reported0.097