winogrande
Browse files- src/test_winogrande.py +78 -0
src/test_winogrande.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import jax
|
| 2 |
+
print(jax.local_device_count())
|
| 3 |
+
import jax.numpy as jnp
|
| 4 |
+
|
| 5 |
+
import flax
|
| 6 |
+
import flax.linen as nn
|
| 7 |
+
from flax.core.frozen_dict import FrozenDict, unfreeze
|
| 8 |
+
from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key
|
| 9 |
+
|
| 10 |
+
from transformers import GPTNeoConfig
|
| 11 |
+
from transformers.models.gpt_neo.modeling_flax_gpt_neo import FlaxGPTNeoPreTrainedModel
|
| 12 |
+
from transformers import GPT2Tokenizer
|
| 13 |
+
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
import pandas as pd
|
| 16 |
+
|
| 17 |
+
num_choices=2
|
| 18 |
+
dataset = load_dataset('winogrande', 'winogrande_xl')
|
| 19 |
+
|
| 20 |
+
def preprocess(example):
|
| 21 |
+
example['first_sentence']=[example['sentence']]*num_choices
|
| 22 |
+
example['second_sentence']=[example[f'option{i}'] for i in [1,2]]
|
| 23 |
+
return example
|
| 24 |
+
|
| 25 |
+
test_dataset=dataset['test'].map(preprocess)
|
| 26 |
+
|
| 27 |
+
len_test_dataset=100
|
| 28 |
+
|
| 29 |
+
test_dataset=test_dataset.select(range(len_test_dataset))
|
| 30 |
+
|
| 31 |
+
tokenizer=GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3B',pad_token='<|endoftext|>')
|
| 32 |
+
|
| 33 |
+
remove_col=test_dataset.column_names
|
| 34 |
+
|
| 35 |
+
def tokenize(examples):
|
| 36 |
+
tokenized_examples=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax')
|
| 37 |
+
return tokenized_examples
|
| 38 |
+
|
| 39 |
+
test_dataset=test_dataset.map(tokenize)
|
| 40 |
+
|
| 41 |
+
test_dataset=test_dataset.remove_columns(remove_col)
|
| 42 |
+
list1=[]
|
| 43 |
+
|
| 44 |
+
def glue_test_data_loader(rng,dataset,batch_size):
|
| 45 |
+
steps_per_epoch=len_test_dataset//batch_size
|
| 46 |
+
perms=jax.random.permutation(rng,len_test_dataset)
|
| 47 |
+
perms=perms[:steps_per_epoch*batch_size]
|
| 48 |
+
perms=perms.reshape((steps_per_epoch,batch_size))
|
| 49 |
+
for perm in perms:
|
| 50 |
+
list1.append(perm)
|
| 51 |
+
batch=dataset[perm]
|
| 52 |
+
#print(jnp.array(batch['label']))
|
| 53 |
+
batch={k:jnp.array(v) for k,v in batch.items()}
|
| 54 |
+
#batch=shard(batch)
|
| 55 |
+
yield batch
|
| 56 |
+
|
| 57 |
+
seed=0
|
| 58 |
+
rng=jax.random.PRNGKey(seed)
|
| 59 |
+
dropout_rngs=jax.random.split(rng,jax.local_device_count())
|
| 60 |
+
|
| 61 |
+
input_id=jnp.array(test_dataset['input_ids'])
|
| 62 |
+
att_mask=jnp.array(test_dataset['attention_mask'])
|
| 63 |
+
|
| 64 |
+
total_batch_size=16
|
| 65 |
+
|
| 66 |
+
from model_file import FlaxGPTNeoForMultipleChoice
|
| 67 |
+
|
| 68 |
+
model = FlaxGPTNeoForMultipleChoice.from_pretrained('Vivek/gptneo_winogrande',input_shape=(1,num_choices,1))
|
| 69 |
+
|
| 70 |
+
restored_output=[]
|
| 71 |
+
rng, input_rng = jax.random.split(rng)
|
| 72 |
+
for idx,batch in enumerate(glue_test_data_loader(input_rng, test_dataset, total_batch_size)):
|
| 73 |
+
outputs=model(batch['input_ids'],batch['attention_mask'])
|
| 74 |
+
final_output=jnp.argmax(outputs,axis=-1)
|
| 75 |
+
restored_output.append(final_output)
|
| 76 |
+
|
| 77 |
+
finall=pd.DataFrame({'predictions':restored_output,'permutation':list1})
|
| 78 |
+
finall.to_csv('./winogrande_predictions.csv')
|