File size: 4,366 Bytes
c4562ef
 
6069067
 
 
 
 
 
 
 
 
 
 
 
 
c4562ef
 
 
6069067
c4562ef
6069067
 
 
c4562ef
 
6069067
c4562ef
6069067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4562ef
 
 
 
 
6069067
ba40145
c4562ef
 
6069067
c4562ef
6069067
 
c4562ef
6069067
c4562ef
6069067
 
c4562ef
 
6069067
c4562ef
6069067
c4562ef
6069067
 
 
 
c4562ef
6069067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4562ef
6069067
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
license: mit
tags:
  - keras
  - teeth-alignment
  - dental
  - healthcare
  - unsupervised-learning
  - rlhf
  - image-classification
datasets:
  - custom
library_name: keras
language: en
pipeline_tag: image-classification
---


<h1 align="center">🦷 Teeth Alignment Detection Model</h1>

<p align="center">
  <img src="https://huggingface.co/VilaVision/dentalmisalignmentdetection/resolve/main/Overbite.jpeg" alt="VilaVision Logo" width="400"/>
</p>


## 🧠 Overview

This Keras model classifies dental images into **aligned** vs. **misaligned** categories. It is designed to aid dental practitioners and orthodontists by analyzing clinical photos or X-rays and detecting signs of malocclusion, crowding, or improper alignment.

πŸ§ͺ **Training Highlights**:
- **Unsupervised Learning Phase**: Learns visual features from unlabeled dental image data.
- **RLHF (Reinforcement Learning with Human Feedback)**: Fine-tuned using expert-labeled feedback to make the predictions align with real-world diagnoses.

> πŸ“Œ This model is a research tool and not a substitute for professional dental evaluation.

---

## πŸ—οΈ Architecture

The model is a Convolutional Neural Network (CNN), built in Keras. It likely includes:

- Convolutional layers (Conv2D + ReLU)
- MaxPooling or AveragePooling layers
- Dense classification layers
- Possibly residual connections for stability

πŸ–ΌοΈ **Input shape**: `(224, 224, 3)`  
πŸ“€ **Output**: Class probabilities (e.g., `[0.8, 0.2]` β†’ "aligned")

---

## 🧾 Training Data

Though the dataset is not publicly available, it likely contains:

- Intraoral or panoramic dental photographs  
- Images annotated by human experts  
- Unlabeled data used in the unsupervised phase  
- Labeled samples used during RLHF fine-tuning

The model is inspired by techniques described in [BMC Oral Health, 2022](https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-022-02466-x) and [PMC Orthodontic AI](https://pmc.ncbi.nlm.nih.gov/articles/PMC8813223/).

---

## πŸš€ Usage

### πŸ”§ Install Dependencies

```bash
pip install tensorflow huggingface_hub
```

### πŸ“„ Load and Predict

```python
from tensorflow import keras
from huggingface_hub import hf_hub_download

# Download model
model_path = hf_hub_download(repo_id="VilaVision/dentalmisalignmentdetection", filename="final_teeth_model.keras")
model = keras.models.load_model(model_path)

# Preprocess image
img = keras.preprocessing.image.load_img("path/to/teeth_image.jpg", target_size=(224, 224))
x = keras.preprocessing.image.img_to_array(img) / 255.0
x = x.reshape((1,) + x.shape)

# Predict
preds = model.predict(x)
print("Raw output:", preds)
# Example: preds[0][0] > 0.5 β†’ "misaligned"
```

---

## πŸ“₯ Input & πŸ“€ Output

| Type   | Description                                 |
| ------ | ------------------------------------------- |
| Input  | JPG/PNG image of teeth (224Γ—224), RGB       |
| Output | Class probabilities for alignment detection |

---

## πŸ“ˆ Performance

While no official metrics are available, CNN models for orthodontic imaging tasks have reported:

* ~95–98% accuracy ([BMC Oral Health, 2022](https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-022-02466-x))
* High F1-scores in clinical benchmarks

**Note:** Performance may vary on images that differ from the training distribution.

---

## ⚠️ Limitations

* Not suitable for diagnostic use without expert supervision
* Trained on specific dental image styles β€” generalization may be limited
* May not perform well on low-quality or occluded images
* Biases in training data may affect outputs

Always consult a licensed orthodontist or dentist before taking action based on model predictions.

---

## πŸ“œ License

πŸͺͺ MIT License – free to use, modify, and distribute.

[View on Hugging Face β†’](https://huggingface.co/AP6621/teeth_alignment_detection_modal)

---

## πŸ“š References

* [Deep Learning for Orthodontic Photo Classification – BMC Oral Health](https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-022-02466-x)
* [AI for Classifying Orthodontic Images – PMC Study](https://pmc.ncbi.nlm.nih.gov/articles/PMC8813223/)
* [OpenAI – Learning from Human Feedback (RLHF)](https://openai.com/research/learning-from-human-feedback)

---

🧠 *Model built and maintained by [VilaVision](https://github.com/VilaVision)*