--- library_name: transformers pipeline_tag: text-generation tags: - 64k context - reasoning - thinking - qwen3 - uncensored - llama-cpp - gguf-my-repo base_model: DavidAU/Qwen3-8B-64k-Context-2X-Josiefied-Uncensored --- # Triangle104/Qwen3-8B-64k-Context-2X-Josiefied-Uncensored-Q4_K_M-GGUF This model was converted to GGUF format from [`DavidAU/Qwen3-8B-64k-Context-2X-Josiefied-Uncensored`](https://huggingface.co/DavidAU/Qwen3-8B-64k-Context-2X-Josiefied-Uncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DavidAU/Qwen3-8B-64k-Context-2X-Josiefied-Uncensored) for more details on the model. --- This repo is for Goekdeniz-Guelmez's excellent "Josiefied-Qwen3-8B-abliterated-v1", modified from 32k (32768) context to 64 k (65536) context modified using YARN as per tech notes at Qwen repo. ORG model repo for this fine tune: [ https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1 ] Max context on this version is : 64k (65536) Suggest min context limit of : 8k to 16k for "thinking" / "output". Use Jinja Template or CHATML template. Please refer the QWEN model card for details, benchmarks, how to use, settings, turning reasoning on/off/ system roles etc etc : [ https://huggingface.co/Qwen/Qwen3-8B ] --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen3-8B-64k-Context-2X-Josiefied-Uncensored-Q4_K_M-GGUF --hf-file qwen3-8b-64k-context-2x-josiefied-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen3-8B-64k-Context-2X-Josiefied-Uncensored-Q4_K_M-GGUF --hf-file qwen3-8b-64k-context-2x-josiefied-uncensored-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen3-8B-64k-Context-2X-Josiefied-Uncensored-Q4_K_M-GGUF --hf-file qwen3-8b-64k-context-2x-josiefied-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen3-8B-64k-Context-2X-Josiefied-Uncensored-Q4_K_M-GGUF --hf-file qwen3-8b-64k-context-2x-josiefied-uncensored-q4_k_m.gguf -c 2048 ```