File size: 4,510 Bytes
41ecff5
 
 
 
 
 
 
 
 
 
 
 
d8c8d28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ecff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
---
license: mit
base_model: Open-Reasoner-Zero/Open-Reasoner-Zero-7B
tags:
- llama-cpp
- gguf-my-repo
---

# Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF
This model was converted to GGUF format from [`Open-Reasoner-Zero/Open-Reasoner-Zero-7B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-7B) for more details on the model.

---
An Open Source Approach to Scaling Up Reinforcement Learning on the Base Model

Overview
	



🌊 We introduce Open-Reasoner-Zero, the first open 
source implementation of large-scale reasoning-oriented RL training 
focusing on scalability, simplicity and accessibility.


To enable broader participation in this pivotal moment we witnessed 
and accelerate research towards artificial general intelligence (AGI), 
we release our source code, parameter settings, training data, and model
 weights.
Please refer to our paper for more insights.


Let the Reasoner-Zero tide rise!



	
		
	

		Releases πŸ“¦
	



[2025/02/18]
We release Open-Reasoner-Zero. 


As part of this release, we open-source:


🌊 Paper on our comprehensive analysis and insights in Reasoner-Zero training
πŸ€— HF Model Open-Reasoner-Zero-7B and Open-Reasoner-Zero-32B
🎁 Our curated 57k training data
πŸ“„ Training Scripts to enjoy your own Reasoner-Zero journey!



	
		
	

		Key Features in Codebase πŸ”‘
	



Adopt single controller trainer design, flexible and researcher-friendly.
Colocate training and generation in the same GPUs to maximize GPU utilization.



	
		
	

		Getting Started πŸš€
	




	
		
	

		Installation & Training Scripts
	



We release our Dockerfile in docker folder to facilitate the reproducibility of our training.


To install the package, run:


pip install -e .




	
		
	

		Start Orz-7B PPO Training
	



debug running command in single node:


DEBUG_MODE=True python -m playground.orz_7b_ppo



Multi-node Training:


first on master node, run:


ray start --head



then on other nodes, run:


ray start --address='<master-node-ip>:<master-node-port>'



then on master node, run:


python -m playground.orz_7b_ppo



Your training log will be shown in the master node terminal.



	
		
	

		Start Orz-32B PPO Training
	



running command in 8 nodes:


first on master node, run:


ray start --head



then on other nodes, run:


ray start --address='<master-node-ip>:<master-node-port>'



then on master node, run:


python -m playground.orz_32b_ppo



Your training log will be shown in the master node terminal.



	
		
	

		Data
	



We release all of 57k curated high-quality training data in the data folder.


The details for how to collect data are described in our paper.



	
		
	

		Acknowledgements
	



This work was supported by computing resources and valuable feedback provided by StepFun and Tsinghua University.
Our training framework is built on OpenRLHF, vllm, DeepSpeed and ray.
Our model is based on Qwen2.5-7B and Qwen2.5-32B.
We thank Project Numina and Tulu3 for their collected open sourced data.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF --hf-file open-reasoner-zero-7b-q4_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF --hf-file open-reasoner-zero-7b-q4_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF --hf-file open-reasoner-zero-7b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF --hf-file open-reasoner-zero-7b-q4_k_s.gguf -c 2048
```