File size: 4,510 Bytes
41ecff5 d8c8d28 41ecff5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
license: mit
base_model: Open-Reasoner-Zero/Open-Reasoner-Zero-7B
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF
This model was converted to GGUF format from [`Open-Reasoner-Zero/Open-Reasoner-Zero-7B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-7B) for more details on the model.
---
An Open Source Approach to Scaling Up Reinforcement Learning on the Base Model
Overview
π We introduce Open-Reasoner-Zero, the first open
source implementation of large-scale reasoning-oriented RL training
focusing on scalability, simplicity and accessibility.
To enable broader participation in this pivotal moment we witnessed
and accelerate research towards artificial general intelligence (AGI),
we release our source code, parameter settings, training data, and model
weights.
Please refer to our paper for more insights.
Let the Reasoner-Zero tide rise!
Releases π¦
[2025/02/18]
We release Open-Reasoner-Zero.
As part of this release, we open-source:
π Paper on our comprehensive analysis and insights in Reasoner-Zero training
π€ HF Model Open-Reasoner-Zero-7B and Open-Reasoner-Zero-32B
π Our curated 57k training data
π Training Scripts to enjoy your own Reasoner-Zero journey!
Key Features in Codebase π
Adopt single controller trainer design, flexible and researcher-friendly.
Colocate training and generation in the same GPUs to maximize GPU utilization.
Getting Started π
Installation & Training Scripts
We release our Dockerfile in docker folder to facilitate the reproducibility of our training.
To install the package, run:
pip install -e .
Start Orz-7B PPO Training
debug running command in single node:
DEBUG_MODE=True python -m playground.orz_7b_ppo
Multi-node Training:
first on master node, run:
ray start --head
then on other nodes, run:
ray start --address='<master-node-ip>:<master-node-port>'
then on master node, run:
python -m playground.orz_7b_ppo
Your training log will be shown in the master node terminal.
Start Orz-32B PPO Training
running command in 8 nodes:
first on master node, run:
ray start --head
then on other nodes, run:
ray start --address='<master-node-ip>:<master-node-port>'
then on master node, run:
python -m playground.orz_32b_ppo
Your training log will be shown in the master node terminal.
Data
We release all of 57k curated high-quality training data in the data folder.
The details for how to collect data are described in our paper.
Acknowledgements
This work was supported by computing resources and valuable feedback provided by StepFun and Tsinghua University.
Our training framework is built on OpenRLHF, vllm, DeepSpeed and ray.
Our model is based on Qwen2.5-7B and Qwen2.5-32B.
We thank Project Numina and Tulu3 for their collected open sourced data.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF --hf-file open-reasoner-zero-7b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF --hf-file open-reasoner-zero-7b-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF --hf-file open-reasoner-zero-7b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Open-Reasoner-Zero-7B-Q4_K_S-GGUF --hf-file open-reasoner-zero-7b-q4_k_s.gguf -c 2048
```
|