GGUF
llama-cpp
gguf-my-repo
AlicanKiraz0 commited on
Commit
0590f03
Β·
verified Β·
1 Parent(s): ecd3e89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +204 -38
README.md CHANGED
@@ -1,51 +1,217 @@
1
- ---
2
- license: mit
3
- base_model: AlicanKiraz0/Qwen3-14B-BaronLLM-v2
4
- tags:
5
- - llama-cpp
6
- - gguf-my-repo
7
- ---
8
 
9
- # AlicanKiraz0/Qwen3-14B-BaronLLM-v2-Q8_0-GGUF
10
- This model was converted to GGUF format from [`AlicanKiraz0/Qwen3-14B-BaronLLM-v2`](https://huggingface.co/AlicanKiraz0/Qwen3-14B-BaronLLM-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
- Refer to the [original model card](https://huggingface.co/AlicanKiraz0/Qwen3-14B-BaronLLM-v2) for more details on the model.
12
 
13
- ## Use with llama.cpp
14
- Install llama.cpp through brew (works on Mac and Linux)
15
 
16
- ```bash
17
- brew install llama.cpp
18
 
19
- ```
20
- Invoke the llama.cpp server or the CLI.
21
 
22
- ### CLI:
23
- ```bash
24
- llama-cli --hf-repo AlicanKiraz0/Qwen3-14B-BaronLLM-v2-Q8_0-GGUF --hf-file qwen3-14b-baronllm-v2-q8_0.gguf -p "The meaning to life and the universe is"
25
- ```
26
 
27
- ### Server:
28
- ```bash
29
- llama-server --hf-repo AlicanKiraz0/Qwen3-14B-BaronLLM-v2-Q8_0-GGUF --hf-file qwen3-14b-baronllm-v2-q8_0.gguf -c 2048
30
- ```
 
31
 
32
- Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
33
 
34
- Step 1: Clone llama.cpp from GitHub.
35
- ```
36
- git clone https://github.com/ggerganov/llama.cpp
37
- ```
38
 
39
- Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
40
- ```
41
- cd llama.cpp && LLAMA_CURL=1 make
42
- ```
43
 
44
- Step 3: Run inference through the main binary.
45
- ```
46
- ./llama-cli --hf-repo AlicanKiraz0/Qwen3-14B-BaronLLM-v2-Q8_0-GGUF --hf-file qwen3-14b-baronllm-v2-q8_0.gguf -p "The meaning to life and the universe is"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  ```
48
- or
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  ```
50
- ./llama-server --hf-repo AlicanKiraz0/Qwen3-14B-BaronLLM-v2-Q8_0-GGUF --hf-file qwen3-14b-baronllm-v2-q8_0.gguf -c 2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  ```
 
 
1
+ ---
2
+ license: mit
3
+ base_model: AlicanKiraz0/Qwen3-14B-BaronLLM-v2
4
+ tags:
5
+ - llama-cpp
6
+ - gguf-my-repo
7
+ ---
8
 
9
+ Based on the information you've provided, here's a comprehensive README.md for BaronLLM v2.0:
 
 
10
 
11
+ ```markdown
12
+ # BaronLLM v2.0 - State-of-the-Art Offensive Security AI Model
13
 
14
+ <img src="https://huggingface.co/AlicanKiraz0/BaronLLM-llama3.1-v1/resolve/main/BaronLLM.png" width="700" />
 
15
 
16
+ **Developed by Alican Kiraz | Trendyol Group Security Team**
 
17
 
18
+ [![Linkedin](https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white)](https://tr.linkedin.com/in/alican-kiraz)
19
+ ![X (formerly Twitter) URL](https://img.shields.io/twitter/url?url=https%3A%2F%2Fx.com%2FAlicanKiraz0)
20
+ ![YouTube Channel Subscribers](https://img.shields.io/youtube/channel/subscribers/UCEAiUT9FMFemDtcKo9G9nUQ)
 
21
 
22
+ **Links:**
23
+ - Medium: https://alican-kiraz1.medium.com/
24
+ - LinkedIn: https://tr.linkedin.com/in/alican-kiraz
25
+ - X: https://x.com/AlicanKiraz0
26
+ - YouTube: https://youtube.com/@alicankiraz0
27
 
28
+ > **BaronLLM v2.0** is a state-of-the-art large language model fine-tuned specifically for *offensive cybersecurity research & adversarial simulation*, achieving breakthrough performance on industry benchmarks while maintaining safety constraints.
29
 
30
+ ---
 
 
 
31
 
32
+ ## πŸ† Benchmark Achievements
 
 
 
33
 
34
+ ### CS-Eval Global Rankings
35
+ - **13th place** globally among all cybersecurity AI models
36
+ - **4th place** among publicly released models in its parameter class
37
+ - Comprehensive average score: **80.93%**
38
+
39
+ ### SecBench Performance Metrics
40
+
41
+ | Category | BaronLLM v2.0 | vs. Industry Leaders |
42
+ |----------|---------------|----------------------|
43
+ | **Standards & Regulations** | **87.2%** | Only 4.3 points behind Deepseek-v3 (671B) - 48Γ— smaller! |
44
+ | **Application Security** | **85.5%** | Just 4.8 points behind GPT-4o (175B) - 12.5Γ— more compact! |
45
+ | **Endpoint & Host** | **88.1%** | Only 1.4 points behind o1-preview (200B) - 14Γ— higher efficiency! |
46
+ | **MCQ Overall** | **86.9%** | Within 2-6% of premium models! |
47
+
48
+ ### Performance Improvements (v1 β†’ v2)
49
+ - Base model performance boosted by **~1.5x** on CyberSec-Eval benchmarks
50
+ - Enhanced with Causal Reasoning and Chain-of-Thought (CoT) capabilities
51
+ - Outperforms Qwen3-14B base model significantly across all security metrics
52
+
53
+ ---
54
+
55
+ ## ✨ Key Features
56
+
57
+ | Capability | Details |
58
+ |------------|---------|
59
+ | **Adversary Simulation** | Generates full ATT&CK chains, C2 playbooks, and social-engineering scenarios |
60
+ | **Exploit Reasoning** | Step-by-step vulnerability analysis with code-level explanations and PoC generation |
61
+ | **Payload Optimization** | Advanced obfuscation techniques and multi-stage payload logic |
62
+ | **Threat Intelligence** | Log analysis, artifact triage, and attack pattern recognition |
63
+ | **Cloud-Native Security** | Kubernetes, serverless, and multi-cloud environment testing |
64
+ | **Emerging Threats** | AI/ML security, quantum computing risks, and zero-day research |
65
+
66
+ ---
67
+
68
+ ## πŸ—οΈ Model Architecture
69
+
70
+ | Specification | Details |
71
+ |--------------|---------|
72
+ | **Base Model** | Qwen3-14B |
73
+ | **Parameters** | 14 Billion |
74
+ | **Context Length** | 8,192 tokens |
75
+ | **Training Data** | 53,202 curated examples |
76
+ | **Domains Covered** | 200+ specialized cybersecurity areas |
77
+ | **Languages** | English |
78
+ | **Fine-tuning Method** | Instruction tuning with CoT |
79
+
80
+ ---
81
+
82
+ ## πŸ“Š Training Dataset
83
+
84
+ **53,202** meticulously curated instruction-tuning examples covering **200+ specialized cybersecurity domains**:
85
+
86
+ ### Topic Distribution
87
+ - Cloud Security & DevSecOps: 18.5%
88
+ - Threat Intelligence & Hunting: 16.2%
89
+ - Incident Response & Forensics: 14.8%
90
+ - AI/ML Security: 12.3%
91
+ - Network & Protocol Security: 11.7%
92
+ - Identity & Access Management: 9.4%
93
+ - Emerging Technologies: 8.6%
94
+ - Platform-Specific Security: 5.3%
95
+ - Compliance & Governance: 3.2%
96
+
97
+ ### Data Sources (Curated & Redacted)
98
+ - Public vulnerability databases (NVD/CVE, VulnDB)
99
+ - Security research papers (Project Zero, PortSwigger, NCC Group)
100
+ - Industry threat reports (with permissions)
101
+ - Synthetic ATT&CK chains (auto-generated + human-vetted)
102
+ - Conference proceedings (BlackHat, DEF CON, RSA)
103
+
104
+ > **Note:** No copyrighted exploit code or proprietary malware datasets were used.
105
+ > Dataset filtering removed raw shellcode/binary payloads.
106
+
107
+ ---
108
+
109
+ ## πŸš€ Usage & Access
110
+
111
+ ### Availability
112
+ Due to the sensitive nature of offensive security capabilities, BaronLLM v2.0 is available through:
113
+ - **Invite-only access** for verified cybersecurity professionals
114
+ - **Academic partnerships** with research institutions
115
+ - **Enterprise licensing** for authorized security teams
116
+
117
+ To request access, please contact with your professional credentials and use case.
118
+
119
+ ### Quick Start (For Authorized Users)
120
+ ```python
121
+ from transformers import AutoModelForCausalLM, AutoTokenizer
122
+
123
+ model_id = "AlicanKiraz/BaronLLM-v2.0" # Requires authentication
124
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
125
+ model = AutoModelForCausalLM.from_pretrained(
126
+ model_id,
127
+ torch_dtype="auto",
128
+ device_map="auto",
129
+ )
130
+
131
+ def generate(prompt, **kwargs):
132
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
133
+ output = model.generate(**inputs, max_new_tokens=512, **kwargs)
134
+ return tokenizer.decode(output[0], skip_special_tokens=True)
135
+
136
+ # Example usage
137
+ print(generate("Analyze the exploitability of CVE-2024-45721 in a Kubernetes cluster"))
138
  ```
139
+
140
+ ---
141
+
142
+ ## πŸ“š Prompting Best Practices
143
+
144
+ | Objective | Template | Parameters |
145
+ |-----------|----------|------------|
146
+ | **Exploit Analysis** | `ROLE: Senior Pentester\nOBJECTIVE: Analyze CVE-XXXX...` | `temperature=0.3, top_p=0.9` |
147
+ | **Red Team Planning** | `Generate ATT&CK chain for [target environment]...` | `temperature=0.5, top_p=0.95` |
148
+ | **Threat Hunting** | `Identify C2 patterns in [log type]...` | `temperature=0.2, top_p=0.85` |
149
+ | **Incident Response** | `Create response playbook for [threat scenario]...` | `temperature=0.4, top_p=0.9` |
150
+
151
+ ---
152
+
153
+ ## πŸ›‘οΈ Safety & Alignment
154
+
155
+ ### Ethical Framework
156
+ - **Policy Gradient RLHF** with security domain experts
157
+ - **OpenAI/Anthropic-style policies** preventing malicious misuse
158
+ - **Continuous red-teaming** via SecEval v0.3
159
+ - **Dual-use prevention** mechanisms
160
+
161
+ ### Responsible Disclosure
162
+ - Model capabilities are documented transparently
163
+ - Access restricted to verified professionals
164
+ - Usage monitoring for compliance
165
+ - Regular security audits
166
+
167
+ ---
168
+
169
+ ## πŸ“– Academic Publication
170
+
171
+ The technical paper detailing BaronLLM v2.0's architecture, training methodology, and benchmark results will be available on arXiv within one week.
172
+
173
+ **Citation (Preprint - Coming Soon):**
174
+ ```bibtex
175
+ @article{kiraz2025baronllm,
176
+ title={BaronLLM v2.0: State-of-the-Art Offensive Security Language Model},
177
+ author={Kiraz, Alican},
178
+ journal={arXiv preprint arXiv:2025.XXXXX},
179
+ year={2025}
180
+ }
181
  ```
182
+
183
+ ---
184
+
185
+ ## 🀝 Contributing & Support
186
+
187
+ BaronLLM was originally developed to support the Trendyol Group Security Team and has evolved into a state-of-the-art offensive security AI model. We welcome collaboration from the security community:
188
+
189
+ - **Bug Reports**: Via GitHub Issues
190
+ - **Feature Requests**: Through community discussions
191
+ - **Research Collaboration**: Contact for academic partnerships
192
+
193
+ ---
194
+
195
+ ## βš–οΈ License & Disclaimer
196
+
197
+ **License:** Apache 2.0 (Model weights require separate authorization)
198
+
199
+ **Important:** This model is designed for authorized security testing and research only. Users must comply with all applicable laws and obtain proper authorization before conducting any security assessments. The developers assume no liability for misuse.
200
+
201
+ ---
202
+
203
+ ## 🌟 Acknowledgments
204
+
205
+ Special thanks to:
206
+ - Trendyol Group Security Team
207
+ - The open-source security community
208
+ - Academic research partners
209
+ - All contributors and testers
210
+
211
+ ---
212
+
213
+ *"Those who shed light on others do not remain in darkness..."*
214
+
215
+ **This project does not pursue any profit.**
216
  ```
217
+