Upload 2 files
Browse files- handler.py +35 -0
- requirements.txt +1 -0
handler.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
import base64
|
| 5 |
+
from typing import Dict, List, Any
|
| 6 |
+
|
| 7 |
+
class EndpointHandler():
|
| 8 |
+
def __init__(self, model_path=""):
|
| 9 |
+
# Initialize the pipeline with the specified model and set the device to GPU
|
| 10 |
+
self.pipeline = pipeline(task="zero-shot-object-detection", model=model_path, device=0)
|
| 11 |
+
|
| 12 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 13 |
+
"""
|
| 14 |
+
Process an incoming request for zero-shot object detection.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
data (Dict[str, Any]): The input data containing an encoded image and candidate labels.
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
A list of dictionaries, each containing a label and its corresponding score.
|
| 21 |
+
"""
|
| 22 |
+
# Correctly accessing the 'inputs' key and fixing the typo in 'candidates'
|
| 23 |
+
inputs = data.get("inputs", {})
|
| 24 |
+
|
| 25 |
+
# Decode the base64 image to a PIL image
|
| 26 |
+
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
| 27 |
+
|
| 28 |
+
# Get candidate labels
|
| 29 |
+
candidate_labels=inputs["candidates"]
|
| 30 |
+
|
| 31 |
+
# Correctly passing the image and candidate labels to the pipeline
|
| 32 |
+
detection_results = self.pipeline(image=image, candidate_labels=inputs["candidates"], threshold = 0)
|
| 33 |
+
|
| 34 |
+
# Adjusting the return statement to match the expected output structure
|
| 35 |
+
return detection_results
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
transformers==4.37.2
|