Commit
·
9f96518
1
Parent(s):
d36602a
update model card (#1)
Browse files- update modelcard (6068a4cb4fc5d1d1e75a732c98d97274e23c0cbe)
Co-authored-by: Will Berman <[email protected]>
- README.md +89 -1
- images/depth.png +0 -0
- images/depth_input.png +0 -0
- images/depth_output.png +0 -0
README.md
CHANGED
|
@@ -1,3 +1,91 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: runwayml/stable-diffusion-v1-5
|
| 4 |
+
tags:
|
| 5 |
+
- art
|
| 6 |
+
- t2i-adapter
|
| 7 |
+
- controlnet
|
| 8 |
+
- stable-diffusion
|
| 9 |
+
- image-to-image
|
| 10 |
---
|
| 11 |
+
|
| 12 |
+
# T2I Adapter - Depth
|
| 13 |
+
|
| 14 |
+
T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint.
|
| 15 |
+
|
| 16 |
+
This checkpoint provides conditioning on depth for the stable diffusion 1.5 checkpoint.
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
- **Developed by:** T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models
|
| 20 |
+
- **Model type:** Diffusion-based text-to-image generation model
|
| 21 |
+
- **Language(s):** English
|
| 22 |
+
- **License:** Apache 2.0
|
| 23 |
+
- **Resources for more information:** [GitHub Repository](https://github.com/TencentARC/T2I-Adapter), [Paper](https://arxiv.org/abs/2302.08453).
|
| 24 |
+
- **Cite as:**
|
| 25 |
+
|
| 26 |
+
@misc{
|
| 27 |
+
title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models},
|
| 28 |
+
author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie},
|
| 29 |
+
year={2023},
|
| 30 |
+
eprint={2302.08453},
|
| 31 |
+
archivePrefix={arXiv},
|
| 32 |
+
primaryClass={cs.CV}
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
### Checkpoints
|
| 36 |
+
|
| 37 |
+
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|
| 38 |
+
|---|---|---|---|
|
| 39 |
+
|[TencentARC/t2iadapter_color_sd14v1](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1)<br/> *Trained with spatial color palette* | A image with 8x8 color palette.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"/></a>|
|
| 40 |
+
|[TencentARC/t2iadapter_canny_sd14v1](https://huggingface.co/TencentARC/t2iadapter_canny_sd14v1)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"/></a>|
|
| 41 |
+
|[TencentARC/t2iadapter_sketch_sd14v1](https://huggingface.co/TencentARC/t2iadapter_sketch_sd14v1)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"/></a>|
|
| 42 |
+
|[TencentARC/t2iadapter_depth_sd14v1](https://huggingface.co/TencentARC/t2iadapter_depth_sd14v1)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"/></a>|
|
| 43 |
+
|[TencentARC/t2iadapter_openpose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_openpose_sd14v1)<br/> *Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"/></a>|
|
| 44 |
+
|[TencentARC/t2iadapter_keypose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_keypose_sd14v1)<br/> *Trained with mmpose skeleton image* | A [mmpose skeleton](https://github.com/open-mmlab/mmpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"/></a>|
|
| 45 |
+
|[TencentARC/t2iadapter_seg_sd14v1](https://huggingface.co/TencentARC/t2iadapter_seg_sd14v1)<br/>*Trained with semantic segmentation* | An [custom](https://github.com/TencentARC/T2I-Adapter/discussions/25) segmentation protocol image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"/></a> |
|
| 46 |
+
|[TencentARC/t2iadapter_canny_sd15v2](https://huggingface.co/TencentARC/t2iadapter_canny_sd15v2)||
|
| 47 |
+
|[TencentARC/t2iadapter_depth_sd15v2](https://huggingface.co/TencentARC/t2iadapter_depth_sd15v2)||
|
| 48 |
+
|[TencentARC/t2iadapter_sketch_sd15v2](https://huggingface.co/TencentARC/t2iadapter_sketch_sd15v2)||
|
| 49 |
+
|[TencentARC/t2iadapter_zoedepth_sd15v1](https://huggingface.co/TencentARC/t2iadapter_zoedepth_sd15v1)||
|
| 50 |
+
|
| 51 |
+
## Example
|
| 52 |
+
|
| 53 |
+
1. Dependencies
|
| 54 |
+
|
| 55 |
+
```sh
|
| 56 |
+
pip install diffusers transformers controlnet_aux
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
2. Run code:
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
from controlnet_aux import MidasDetector
|
| 63 |
+
from PIL import Image
|
| 64 |
+
from diffusers import T2IAdapter, StableDiffusionAdapterPipeline
|
| 65 |
+
import torch
|
| 66 |
+
|
| 67 |
+
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
|
| 68 |
+
|
| 69 |
+
image = Image.open('./images/depth_input.png')
|
| 70 |
+
|
| 71 |
+
image = midas(image)
|
| 72 |
+
|
| 73 |
+
image.save('./images/depth.png')
|
| 74 |
+
|
| 75 |
+
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_depth_sd15v2", torch_dtype=torch.float16)
|
| 76 |
+
pipe = StableDiffusionAdapterPipeline.from_pretrained(
|
| 77 |
+
"runwayml/stable-diffusion-v1-5", adapter=adapter, safety_checker=None, torch_dtype=torch.float16, variant="fp16"
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
pipe.to('cuda')
|
| 81 |
+
|
| 82 |
+
generator = torch.Generator().manual_seed(1)
|
| 83 |
+
|
| 84 |
+
depth_out = pipe(prompt="storm trooper giving a speech", image=image, generator=generator).images[0]
|
| 85 |
+
|
| 86 |
+
depth_out.save('./images/depth_output.png')
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+

|
| 90 |
+

|
| 91 |
+

|
images/depth.png
ADDED
|
images/depth_input.png
ADDED
|
images/depth_output.png
ADDED
|