Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +202 -0
- README.md +119 -0
- dataset2json.py +63 -0
- extract_frame.py +38 -0
- model_structures.log +1497 -0
- myoutput.log +2 -0
- nohup.out +0 -0
- output.log +2 -0
- output/20241207/1929--seed_42-384x512/upper1_00057_00_512x384_3_1929.mp4 +0 -0
- output/20241207/2241--seed_42-384x512/3_s_1110342_in_xl_512x384_3_2241.mp4 +0 -0
- output/20241207/2241--seed_42-384x512/7_s_1110342_in_xl_512x384_3_2241.mp4 +0 -0
- output/20241207/2241--seed_42-384x512/8_s_1009794_in_xl_512x384_3_2241.mp4 +0 -0
- output/20241207/2241--seed_42-384x512/8_s_1110342_in_xl_512x384_3_2241.mp4 +0 -0
- read.py +39 -0
- requirements.txt +29 -0
- scripts.sh +7 -0
- stage1_nohup.out +0 -0
- train_stage_1.py +781 -0
- train_stage_2.py +842 -0
- vivid.py +229 -0
- vividfuxian_motion/20241211/1715/803128_detail_1060638_in_xl.mp4 +0 -0
- vividfuxian_motion/20241212/1437/000004-803128_detail_1060638_in_xl.mp4 +0 -0
- vividfuxian_motion/20241212/1506/000200-803128_detail_1060638_in_xl.mp4 +0 -0
- vividfuxian_motion/20241212/1629/000600-803128_detail_1060638_in_xl.mp4 +0 -0
- vividfuxian_valid/stage1/000010-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/000200-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/000400-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/000600-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/000800-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/001000-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/001200-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/001600-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/001800-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/002000-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/002200-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/002400-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/002600-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/002800-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/003000-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/003400-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/003600-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/003800-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/004200-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/004400-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/004600-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/004800-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/005200-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/005400-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/005600-803137_in_xl_812294_in_xl.jpg +0 -0
- vividfuxian_valid/stage1/005800-803137_in_xl_812294_in_xl.jpg +0 -0
LICENSE
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
Apache License
|
| 3 |
+
Version 2.0, January 2004
|
| 4 |
+
http://www.apache.org/licenses/
|
| 5 |
+
|
| 6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 7 |
+
|
| 8 |
+
1. Definitions.
|
| 9 |
+
|
| 10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 12 |
+
|
| 13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 14 |
+
the copyright owner that is granting the License.
|
| 15 |
+
|
| 16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 17 |
+
other entities that control, are controlled by, or are under common
|
| 18 |
+
control with that entity. For the purposes of this definition,
|
| 19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 20 |
+
direction or management of such entity, whether by contract or
|
| 21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 23 |
+
|
| 24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 25 |
+
exercising permissions granted by this License.
|
| 26 |
+
|
| 27 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 28 |
+
including but not limited to software source code, documentation
|
| 29 |
+
source, and configuration files.
|
| 30 |
+
|
| 31 |
+
"Object" form shall mean any form resulting from mechanical
|
| 32 |
+
transformation or translation of a Source form, including but
|
| 33 |
+
not limited to compiled object code, generated documentation,
|
| 34 |
+
and conversions to other media types.
|
| 35 |
+
|
| 36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 37 |
+
Object form, made available under the License, as indicated by a
|
| 38 |
+
copyright notice that is included in or attached to the work
|
| 39 |
+
(an example is provided in the Appendix below).
|
| 40 |
+
|
| 41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 42 |
+
form, that is based on (or derived from) the Work and for which the
|
| 43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 45 |
+
of this License, Derivative Works shall not include works that remain
|
| 46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 47 |
+
the Work and Derivative Works thereof.
|
| 48 |
+
|
| 49 |
+
"Contribution" shall mean any work of authorship, including
|
| 50 |
+
the original version of the Work and any modifications or additions
|
| 51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 55 |
+
means any form of electronic, verbal, or written communication sent
|
| 56 |
+
to the Licensor or its representatives, including but not limited to
|
| 57 |
+
communication on electronic mailing lists, source code control systems,
|
| 58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 60 |
+
excluding communication that is conspicuously marked or otherwise
|
| 61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 62 |
+
|
| 63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 65 |
+
subsequently incorporated within the Work.
|
| 66 |
+
|
| 67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 72 |
+
Work and such Derivative Works in Source or Object form.
|
| 73 |
+
|
| 74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 77 |
+
(except as stated in this section) patent license to make, have made,
|
| 78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 79 |
+
where such license applies only to those patent claims licensable
|
| 80 |
+
by such Contributor that are necessarily infringed by their
|
| 81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 83 |
+
institute patent litigation against any entity (including a
|
| 84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 85 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 86 |
+
or contributory patent infringement, then any patent licenses
|
| 87 |
+
granted to You under this License for that Work shall terminate
|
| 88 |
+
as of the date such litigation is filed.
|
| 89 |
+
|
| 90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 91 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 92 |
+
modifications, and in Source or Object form, provided that You
|
| 93 |
+
meet the following conditions:
|
| 94 |
+
|
| 95 |
+
(a) You must give any other recipients of the Work or
|
| 96 |
+
Derivative Works a copy of this License; and
|
| 97 |
+
|
| 98 |
+
(b) You must cause any modified files to carry prominent notices
|
| 99 |
+
stating that You changed the files; and
|
| 100 |
+
|
| 101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 102 |
+
that You distribute, all copyright, patent, trademark, and
|
| 103 |
+
attribution notices from the Source form of the Work,
|
| 104 |
+
excluding those notices that do not pertain to any part of
|
| 105 |
+
the Derivative Works; and
|
| 106 |
+
|
| 107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 108 |
+
distribution, then any Derivative Works that You distribute must
|
| 109 |
+
include a readable copy of the attribution notices contained
|
| 110 |
+
within such NOTICE file, excluding those notices that do not
|
| 111 |
+
pertain to any part of the Derivative Works, in at least one
|
| 112 |
+
of the following places: within a NOTICE text file distributed
|
| 113 |
+
as part of the Derivative Works; within the Source form or
|
| 114 |
+
documentation, if provided along with the Derivative Works; or,
|
| 115 |
+
within a display generated by the Derivative Works, if and
|
| 116 |
+
wherever such third-party notices normally appear. The contents
|
| 117 |
+
of the NOTICE file are for informational purposes only and
|
| 118 |
+
do not modify the License. You may add Your own attribution
|
| 119 |
+
notices within Derivative Works that You distribute, alongside
|
| 120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 121 |
+
that such additional attribution notices cannot be construed
|
| 122 |
+
as modifying the License.
|
| 123 |
+
|
| 124 |
+
You may add Your own copyright statement to Your modifications and
|
| 125 |
+
may provide additional or different license terms and conditions
|
| 126 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 127 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 128 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 129 |
+
the conditions stated in this License.
|
| 130 |
+
|
| 131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 133 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 134 |
+
this License, without any additional terms or conditions.
|
| 135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 136 |
+
the terms of any separate license agreement you may have executed
|
| 137 |
+
with Licensor regarding such Contributions.
|
| 138 |
+
|
| 139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 141 |
+
except as required for reasonable and customary use in describing the
|
| 142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 143 |
+
|
| 144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 145 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 148 |
+
implied, including, without limitation, any warranties or conditions
|
| 149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 151 |
+
appropriateness of using or redistributing the Work and assume any
|
| 152 |
+
risks associated with Your exercise of permissions under this License.
|
| 153 |
+
|
| 154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 155 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 156 |
+
unless required by applicable law (such as deliberate and grossly
|
| 157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 158 |
+
liable to You for damages, including any direct, indirect, special,
|
| 159 |
+
incidental, or consequential damages of any character arising as a
|
| 160 |
+
result of this License or out of the use or inability to use the
|
| 161 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 162 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 163 |
+
other commercial damages or losses), even if such Contributor
|
| 164 |
+
has been advised of the possibility of such damages.
|
| 165 |
+
|
| 166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 169 |
+
or other liability obligations and/or rights consistent with this
|
| 170 |
+
License. However, in accepting such obligations, You may act only
|
| 171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 172 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 173 |
+
defend, and hold each Contributor harmless for any liability
|
| 174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 175 |
+
of your accepting any such warranty or additional liability.
|
| 176 |
+
|
| 177 |
+
END OF TERMS AND CONDITIONS
|
| 178 |
+
|
| 179 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 180 |
+
|
| 181 |
+
To apply the Apache License to your work, attach the following
|
| 182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 183 |
+
replaced with your own identifying information. (Don't include
|
| 184 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 185 |
+
comment syntax for the file format. We also recommend that a
|
| 186 |
+
file or class name and description of purpose be included on the
|
| 187 |
+
same "printed page" as the copyright notice for easier
|
| 188 |
+
identification within third-party archives.
|
| 189 |
+
|
| 190 |
+
Copyright [yyyy] [name of copyright owner]
|
| 191 |
+
|
| 192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 193 |
+
you may not use this file except in compliance with the License.
|
| 194 |
+
You may obtain a copy of the License at
|
| 195 |
+
|
| 196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 197 |
+
|
| 198 |
+
Unless required by applicable law or agreed to in writing, software
|
| 199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 201 |
+
See the License for the specific language governing permissions and
|
| 202 |
+
limitations under the License.
|
README.md
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ViViD
|
| 2 |
+
ViViD: Video Virtual Try-on using Diffusion Models
|
| 3 |
+
|
| 4 |
+
[](https://arxiv.org/abs/2405.11794)
|
| 5 |
+
[](https://alibaba-yuanjing-aigclab.github.io/ViViD)
|
| 6 |
+
[](https://huggingface.co/alibaba-yuanjing-aigclab/ViViD)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
## Dataset
|
| 10 |
+
Dataset released: [ViViD](https://huggingface.co/datasets/alibaba-yuanjing-aigclab/ViViD)
|
| 11 |
+
|
| 12 |
+
## Installation
|
| 13 |
+
|
| 14 |
+
```
|
| 15 |
+
git clone https://github.com/alibaba-yuanjing-aigclab/ViViD
|
| 16 |
+
cd ViViD
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
### Environment
|
| 20 |
+
```
|
| 21 |
+
conda create -n vivid python=3.10
|
| 22 |
+
conda activate vivid
|
| 23 |
+
conda activate /mnt/pfs-mc0p4k/ssai/cvg/team/envs/vivid
|
| 24 |
+
pip install -r requirements.txt
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
### Weights
|
| 28 |
+
You can place the weights anywhere you like, for example, ```./ckpts```. If you put them somewhere else, you just need to update the path in ```./configs/prompts/*.yaml```.
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
#### Stable Diffusion Image Variations
|
| 32 |
+
```
|
| 33 |
+
cd ckpts
|
| 34 |
+
|
| 35 |
+
git lfs install
|
| 36 |
+
git clone https://huggingface.co/lambdalabs/sd-image-variations-diffusers
|
| 37 |
+
```
|
| 38 |
+
#### SD-VAE-ft-mse
|
| 39 |
+
```
|
| 40 |
+
git lfs install
|
| 41 |
+
git clone https://huggingface.co/stabilityai/sd-vae-ft-mse
|
| 42 |
+
```
|
| 43 |
+
#### Motion Module
|
| 44 |
+
Download [mm_sd_v15_v2](https://huggingface.co/guoyww/animatediff/blob/main/mm_sd_v15_v2.ckpt)
|
| 45 |
+
|
| 46 |
+
#### ViViD
|
| 47 |
+
```
|
| 48 |
+
git lfs install
|
| 49 |
+
git clone https://huggingface.co/alibaba-yuanjing-aigclab/ViViD
|
| 50 |
+
```
|
| 51 |
+
## Inference
|
| 52 |
+
We provide two demos in ```./configs/prompts/```, run the following commands to have a try😼.
|
| 53 |
+
|
| 54 |
+
```
|
| 55 |
+
python vivid.py --config ./configs/prompts/upper1.yaml
|
| 56 |
+
|
| 57 |
+
python vivid.py --config ./configs/prompts/lower1.yaml
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Data
|
| 61 |
+
As illustrated in ```./data```, the following data should be provided.
|
| 62 |
+
```text
|
| 63 |
+
./data/
|
| 64 |
+
|-- agnostic
|
| 65 |
+
| |-- video1.mp4
|
| 66 |
+
| |-- video2.mp4
|
| 67 |
+
| ...
|
| 68 |
+
|-- agnostic_mask
|
| 69 |
+
| |-- video1.mp4
|
| 70 |
+
| |-- video2.mp4
|
| 71 |
+
| ...
|
| 72 |
+
|-- cloth
|
| 73 |
+
| |-- cloth1.jpg
|
| 74 |
+
| |-- cloth2.jpg
|
| 75 |
+
| ...
|
| 76 |
+
|-- cloth_mask
|
| 77 |
+
| |-- cloth1.jpg
|
| 78 |
+
| |-- cloth2.jpg
|
| 79 |
+
| ...
|
| 80 |
+
|-- densepose
|
| 81 |
+
| |-- video1.mp4
|
| 82 |
+
| |-- video2.mp4
|
| 83 |
+
| ...
|
| 84 |
+
|-- videos
|
| 85 |
+
| |-- video1.mp4
|
| 86 |
+
| |-- video2.mp4
|
| 87 |
+
| ...
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
### Agnostic and agnostic_mask video
|
| 91 |
+
This part is a bit complex, you can obtain them through any of the following three ways:
|
| 92 |
+
1. Follow [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) to extract them frame-by-frame.(recommended)
|
| 93 |
+
2. Use [SAM](https://github.com/facebookresearch/segment-anything) + Gaussian Blur.(see ```./tools/sam_agnostic.py``` for an example)
|
| 94 |
+
3. Mask editor tools.
|
| 95 |
+
|
| 96 |
+
Note that the shape and size of the agnostic area may affect the try-on results.
|
| 97 |
+
|
| 98 |
+
### Densepose video
|
| 99 |
+
See [vid2densepose](https://github.com/Flode-Labs/vid2densepose).(Thanks)
|
| 100 |
+
|
| 101 |
+
### Cloth mask
|
| 102 |
+
Any detection tool is ok for obtaining the mask, like [SAM](https://github.com/facebookresearch/segment-anything).
|
| 103 |
+
|
| 104 |
+
## BibTeX
|
| 105 |
+
```text
|
| 106 |
+
@misc{fang2024vivid,
|
| 107 |
+
title={ViViD: Video Virtual Try-on using Diffusion Models},
|
| 108 |
+
author={Zixun Fang and Wei Zhai and Aimin Su and Hongliang Song and Kai Zhu and Mao Wang and Yu Chen and Zhiheng Liu and Yang Cao and Zheng-Jun Zha},
|
| 109 |
+
year={2024},
|
| 110 |
+
eprint={2405.11794},
|
| 111 |
+
archivePrefix={arXiv},
|
| 112 |
+
primaryClass={cs.CV}
|
| 113 |
+
}
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
## Contact Us
|
| 117 |
+
**Zixun Fang**: [[email protected]](mailto:[email protected])
|
| 118 |
+
**Yu Chen**: [[email protected]](mailto:[email protected])
|
| 119 |
+
|
dataset2json.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
def collect_files(data_dir):
|
| 5 |
+
"""
|
| 6 |
+
遍历 data 文件夹下的各子文件夹,以文件名的前 7 个字符为键,将对应的文件路径整理为字典
|
| 7 |
+
"""
|
| 8 |
+
file_dict = {}
|
| 9 |
+
|
| 10 |
+
# 子文件夹列表
|
| 11 |
+
subfolders = ['densepose', 'videos', 'cloth', 'cloth_mask', 'agnostic_mask', 'agnostic']
|
| 12 |
+
|
| 13 |
+
for subfolder in subfolders:
|
| 14 |
+
subfolder_path = os.path.join(data_dir, subfolder)
|
| 15 |
+
|
| 16 |
+
if not os.path.exists(subfolder_path):
|
| 17 |
+
print(f"Warning: {subfolder_path} 路径不存在")
|
| 18 |
+
continue
|
| 19 |
+
|
| 20 |
+
# 遍历子文件夹中的文件
|
| 21 |
+
for file_name in os.listdir(subfolder_path):
|
| 22 |
+
# 只取文件名前 7 个字符用于匹配
|
| 23 |
+
key = file_name[:7]
|
| 24 |
+
if key not in file_dict:
|
| 25 |
+
# 初始化字典键为前 7 个字符的键名
|
| 26 |
+
file_dict[key] = {}
|
| 27 |
+
|
| 28 |
+
# 将当前文件路径保存在子文件夹名称对应的 key 下
|
| 29 |
+
file_dict[key][subfolder] = os.path.join(subfolder_path, file_name)
|
| 30 |
+
|
| 31 |
+
return file_dict
|
| 32 |
+
|
| 33 |
+
def generate_json(data_dir, output_file):
|
| 34 |
+
"""
|
| 35 |
+
生成 JSON 文件,将文件匹配结果输出
|
| 36 |
+
"""
|
| 37 |
+
files = collect_files(data_dir)
|
| 38 |
+
result = []
|
| 39 |
+
|
| 40 |
+
# 构造符合格式的 JSON 列表
|
| 41 |
+
for key, paths in files.items():
|
| 42 |
+
result.append({
|
| 43 |
+
"densepose": paths.get("densepose", ""), # 如果某个字段不存在,则填补为空值
|
| 44 |
+
"videos": paths.get("videos", ""),
|
| 45 |
+
"cloth": paths.get("cloth", ""),
|
| 46 |
+
"cloth_mask": paths.get("cloth_mask", ""),
|
| 47 |
+
"agnostic_mask": paths.get("agnostic_mask", ""),
|
| 48 |
+
"agnostic": paths.get("agnostic", "")
|
| 49 |
+
})
|
| 50 |
+
|
| 51 |
+
# 写入到指定路径的 JSON 文件
|
| 52 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
| 53 |
+
json.dump(result, f, indent=4, ensure_ascii=False)
|
| 54 |
+
|
| 55 |
+
print(f"JSON 文件已生成: {output_file}")
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
# 要匹配的 data 文件夹路径
|
| 59 |
+
data_dir = "/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/data"
|
| 60 |
+
# 输出的 JSON 文件路径
|
| 61 |
+
output_file = "/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/data/vividfuxian_stage1.json"
|
| 62 |
+
|
| 63 |
+
generate_json(data_dir, output_file)
|
extract_frame.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def extract_frame(video_path, frame_number, output_path):
|
| 5 |
+
# 打开视频文件
|
| 6 |
+
cap = cv2.VideoCapture(video_path)
|
| 7 |
+
|
| 8 |
+
if not cap.isOpened():
|
| 9 |
+
print(f"无法打开视频文件: {video_path}")
|
| 10 |
+
return
|
| 11 |
+
|
| 12 |
+
# 设置视频捕捉的位置到指定帧
|
| 13 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
| 14 |
+
|
| 15 |
+
# 读取指定的帧
|
| 16 |
+
success, frame = cap.read()
|
| 17 |
+
|
| 18 |
+
if success:
|
| 19 |
+
# 保存帧为指定路径的文件
|
| 20 |
+
cv2.imwrite(output_path, frame)
|
| 21 |
+
print(f"已成功提取帧 {frame_number} 并保存为 {output_path}")
|
| 22 |
+
else:
|
| 23 |
+
print(f"未能读取帧 {frame_number}。请检查帧编号是否超出范围。")
|
| 24 |
+
|
| 25 |
+
# 释放资源
|
| 26 |
+
cap.release()
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
video_file = "/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/dataset/ViViD/dresses/densepose/803137_detail.mp4" # 替换为你的 MP4 文件路径
|
| 30 |
+
frame_to_extract = 24 # 需要提取的帧编号
|
| 31 |
+
output_file = "/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/configs/valid/densepose_images/803137_in_xl.jpg" # 替换为你想保存的路径
|
| 32 |
+
|
| 33 |
+
# 创建包含输出文件的目录(如果不存在)
|
| 34 |
+
output_dir = os.path.dirname(output_file)
|
| 35 |
+
if not os.path.exists(output_dir) and output_dir:
|
| 36 |
+
os.makedirs(output_dir)
|
| 37 |
+
|
| 38 |
+
extract_frame(video_file, frame_to_extract, output_file)
|
model_structures.log
ADDED
|
@@ -0,0 +1,1497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Denoising UNet structure:
|
| 2 |
+
UNet3DConditionModel(
|
| 3 |
+
(conv_in): InflatedConv3d(9, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 4 |
+
(time_proj): Timesteps()
|
| 5 |
+
(time_embedding): TimestepEmbedding(
|
| 6 |
+
(linear_1): LoRACompatibleLinear(in_features=320, out_features=1280, bias=True)
|
| 7 |
+
(act): SiLU()
|
| 8 |
+
(linear_2): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 9 |
+
)
|
| 10 |
+
(down_blocks): ModuleList(
|
| 11 |
+
(0): CrossAttnDownBlock3D(
|
| 12 |
+
(attentions): ModuleList(
|
| 13 |
+
(0-1): 2 x Transformer3DModel(
|
| 14 |
+
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
| 15 |
+
(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 16 |
+
(transformer_blocks): ModuleList(
|
| 17 |
+
(0): TemporalBasicTransformerBlock(
|
| 18 |
+
(attn1): Attention(
|
| 19 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 20 |
+
(to_k): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 21 |
+
(to_v): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 22 |
+
(to_out): ModuleList(
|
| 23 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 24 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 25 |
+
)
|
| 26 |
+
)
|
| 27 |
+
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 28 |
+
(attn2): Attention(
|
| 29 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 30 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)
|
| 31 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)
|
| 32 |
+
(to_out): ModuleList(
|
| 33 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 34 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 35 |
+
)
|
| 36 |
+
)
|
| 37 |
+
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 38 |
+
(ff): FeedForward(
|
| 39 |
+
(net): ModuleList(
|
| 40 |
+
(0): GEGLU(
|
| 41 |
+
(proj): LoRACompatibleLinear(in_features=320, out_features=2560, bias=True)
|
| 42 |
+
)
|
| 43 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 44 |
+
(2): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
|
| 45 |
+
)
|
| 46 |
+
)
|
| 47 |
+
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 48 |
+
)
|
| 49 |
+
)
|
| 50 |
+
(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 51 |
+
)
|
| 52 |
+
)
|
| 53 |
+
(resnets): ModuleList(
|
| 54 |
+
(0-1): 2 x ResnetBlock3D(
|
| 55 |
+
(norm1): InflatedGroupNorm(32, 320, eps=1e-05, affine=True)
|
| 56 |
+
(conv1): InflatedConv3d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 57 |
+
(time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
|
| 58 |
+
(norm2): InflatedGroupNorm(32, 320, eps=1e-05, affine=True)
|
| 59 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 60 |
+
(conv2): InflatedConv3d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 61 |
+
(nonlinearity): SiLU()
|
| 62 |
+
)
|
| 63 |
+
)
|
| 64 |
+
(motion_modules): ModuleList(
|
| 65 |
+
(0-1): 2 x VanillaTemporalModule(
|
| 66 |
+
(temporal_transformer): TemporalTransformer3DModel(
|
| 67 |
+
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
| 68 |
+
(proj_in): Linear(in_features=320, out_features=320, bias=True)
|
| 69 |
+
(transformer_blocks): ModuleList(
|
| 70 |
+
(0): TemporalTransformerBlock(
|
| 71 |
+
(attention_blocks): ModuleList(
|
| 72 |
+
(0-1): 2 x VersatileAttention(
|
| 73 |
+
(Module Info) Attention_Mode: Temporal, Is_Cross_Attention: False
|
| 74 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 75 |
+
(to_k): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 76 |
+
(to_v): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 77 |
+
(to_out): ModuleList(
|
| 78 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 79 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 80 |
+
)
|
| 81 |
+
(pos_encoder): PositionalEncoding(
|
| 82 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 83 |
+
)
|
| 84 |
+
)
|
| 85 |
+
)
|
| 86 |
+
(norms): ModuleList(
|
| 87 |
+
(0-1): 2 x LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 88 |
+
)
|
| 89 |
+
(ff): FeedForward(
|
| 90 |
+
(net): ModuleList(
|
| 91 |
+
(0): GEGLU(
|
| 92 |
+
(proj): LoRACompatibleLinear(in_features=320, out_features=2560, bias=True)
|
| 93 |
+
)
|
| 94 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 95 |
+
(2): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
|
| 96 |
+
)
|
| 97 |
+
)
|
| 98 |
+
(ff_norm): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 99 |
+
)
|
| 100 |
+
)
|
| 101 |
+
(proj_out): Linear(in_features=320, out_features=320, bias=True)
|
| 102 |
+
)
|
| 103 |
+
)
|
| 104 |
+
)
|
| 105 |
+
(downsamplers): ModuleList(
|
| 106 |
+
(0): Downsample3D(
|
| 107 |
+
(conv): InflatedConv3d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 108 |
+
)
|
| 109 |
+
)
|
| 110 |
+
)
|
| 111 |
+
(1): CrossAttnDownBlock3D(
|
| 112 |
+
(attentions): ModuleList(
|
| 113 |
+
(0-1): 2 x Transformer3DModel(
|
| 114 |
+
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
| 115 |
+
(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 116 |
+
(transformer_blocks): ModuleList(
|
| 117 |
+
(0): TemporalBasicTransformerBlock(
|
| 118 |
+
(attn1): Attention(
|
| 119 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 120 |
+
(to_k): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 121 |
+
(to_v): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 122 |
+
(to_out): ModuleList(
|
| 123 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 124 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 125 |
+
)
|
| 126 |
+
)
|
| 127 |
+
(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 128 |
+
(attn2): Attention(
|
| 129 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 130 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)
|
| 131 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)
|
| 132 |
+
(to_out): ModuleList(
|
| 133 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 134 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 135 |
+
)
|
| 136 |
+
)
|
| 137 |
+
(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 138 |
+
(ff): FeedForward(
|
| 139 |
+
(net): ModuleList(
|
| 140 |
+
(0): GEGLU(
|
| 141 |
+
(proj): LoRACompatibleLinear(in_features=640, out_features=5120, bias=True)
|
| 142 |
+
)
|
| 143 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 144 |
+
(2): LoRACompatibleLinear(in_features=2560, out_features=640, bias=True)
|
| 145 |
+
)
|
| 146 |
+
)
|
| 147 |
+
(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 148 |
+
)
|
| 149 |
+
)
|
| 150 |
+
(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 151 |
+
)
|
| 152 |
+
)
|
| 153 |
+
(resnets): ModuleList(
|
| 154 |
+
(0): ResnetBlock3D(
|
| 155 |
+
(norm1): InflatedGroupNorm(32, 320, eps=1e-05, affine=True)
|
| 156 |
+
(conv1): InflatedConv3d(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 157 |
+
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
| 158 |
+
(norm2): InflatedGroupNorm(32, 640, eps=1e-05, affine=True)
|
| 159 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 160 |
+
(conv2): InflatedConv3d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 161 |
+
(nonlinearity): SiLU()
|
| 162 |
+
(conv_shortcut): InflatedConv3d(320, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 163 |
+
)
|
| 164 |
+
(1): ResnetBlock3D(
|
| 165 |
+
(norm1): InflatedGroupNorm(32, 640, eps=1e-05, affine=True)
|
| 166 |
+
(conv1): InflatedConv3d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 167 |
+
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
| 168 |
+
(norm2): InflatedGroupNorm(32, 640, eps=1e-05, affine=True)
|
| 169 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 170 |
+
(conv2): InflatedConv3d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 171 |
+
(nonlinearity): SiLU()
|
| 172 |
+
)
|
| 173 |
+
)
|
| 174 |
+
(motion_modules): ModuleList(
|
| 175 |
+
(0-1): 2 x VanillaTemporalModule(
|
| 176 |
+
(temporal_transformer): TemporalTransformer3DModel(
|
| 177 |
+
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
| 178 |
+
(proj_in): Linear(in_features=640, out_features=640, bias=True)
|
| 179 |
+
(transformer_blocks): ModuleList(
|
| 180 |
+
(0): TemporalTransformerBlock(
|
| 181 |
+
(attention_blocks): ModuleList(
|
| 182 |
+
(0-1): 2 x VersatileAttention(
|
| 183 |
+
(Module Info) Attention_Mode: Temporal, Is_Cross_Attention: False
|
| 184 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 185 |
+
(to_k): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 186 |
+
(to_v): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 187 |
+
(to_out): ModuleList(
|
| 188 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 189 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 190 |
+
)
|
| 191 |
+
(pos_encoder): PositionalEncoding(
|
| 192 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 193 |
+
)
|
| 194 |
+
)
|
| 195 |
+
)
|
| 196 |
+
(norms): ModuleList(
|
| 197 |
+
(0-1): 2 x LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 198 |
+
)
|
| 199 |
+
(ff): FeedForward(
|
| 200 |
+
(net): ModuleList(
|
| 201 |
+
(0): GEGLU(
|
| 202 |
+
(proj): LoRACompatibleLinear(in_features=640, out_features=5120, bias=True)
|
| 203 |
+
)
|
| 204 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 205 |
+
(2): LoRACompatibleLinear(in_features=2560, out_features=640, bias=True)
|
| 206 |
+
)
|
| 207 |
+
)
|
| 208 |
+
(ff_norm): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 209 |
+
)
|
| 210 |
+
)
|
| 211 |
+
(proj_out): Linear(in_features=640, out_features=640, bias=True)
|
| 212 |
+
)
|
| 213 |
+
)
|
| 214 |
+
)
|
| 215 |
+
(downsamplers): ModuleList(
|
| 216 |
+
(0): Downsample3D(
|
| 217 |
+
(conv): InflatedConv3d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 218 |
+
)
|
| 219 |
+
)
|
| 220 |
+
)
|
| 221 |
+
(2): CrossAttnDownBlock3D(
|
| 222 |
+
(attentions): ModuleList(
|
| 223 |
+
(0-1): 2 x Transformer3DModel(
|
| 224 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 225 |
+
(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 226 |
+
(transformer_blocks): ModuleList(
|
| 227 |
+
(0): TemporalBasicTransformerBlock(
|
| 228 |
+
(attn1): Attention(
|
| 229 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 230 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 231 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 232 |
+
(to_out): ModuleList(
|
| 233 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 234 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 235 |
+
)
|
| 236 |
+
)
|
| 237 |
+
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 238 |
+
(attn2): Attention(
|
| 239 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 240 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 241 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 242 |
+
(to_out): ModuleList(
|
| 243 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 244 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 245 |
+
)
|
| 246 |
+
)
|
| 247 |
+
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 248 |
+
(ff): FeedForward(
|
| 249 |
+
(net): ModuleList(
|
| 250 |
+
(0): GEGLU(
|
| 251 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 252 |
+
)
|
| 253 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 254 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 255 |
+
)
|
| 256 |
+
)
|
| 257 |
+
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 258 |
+
)
|
| 259 |
+
)
|
| 260 |
+
(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 261 |
+
)
|
| 262 |
+
)
|
| 263 |
+
(resnets): ModuleList(
|
| 264 |
+
(0): ResnetBlock3D(
|
| 265 |
+
(norm1): InflatedGroupNorm(32, 640, eps=1e-05, affine=True)
|
| 266 |
+
(conv1): InflatedConv3d(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 267 |
+
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
| 268 |
+
(norm2): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 269 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 270 |
+
(conv2): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 271 |
+
(nonlinearity): SiLU()
|
| 272 |
+
(conv_shortcut): InflatedConv3d(640, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 273 |
+
)
|
| 274 |
+
(1): ResnetBlock3D(
|
| 275 |
+
(norm1): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 276 |
+
(conv1): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 277 |
+
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
| 278 |
+
(norm2): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 279 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 280 |
+
(conv2): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 281 |
+
(nonlinearity): SiLU()
|
| 282 |
+
)
|
| 283 |
+
)
|
| 284 |
+
(motion_modules): ModuleList(
|
| 285 |
+
(0-1): 2 x VanillaTemporalModule(
|
| 286 |
+
(temporal_transformer): TemporalTransformer3DModel(
|
| 287 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 288 |
+
(proj_in): Linear(in_features=1280, out_features=1280, bias=True)
|
| 289 |
+
(transformer_blocks): ModuleList(
|
| 290 |
+
(0): TemporalTransformerBlock(
|
| 291 |
+
(attention_blocks): ModuleList(
|
| 292 |
+
(0-1): 2 x VersatileAttention(
|
| 293 |
+
(Module Info) Attention_Mode: Temporal, Is_Cross_Attention: False
|
| 294 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 295 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 296 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 297 |
+
(to_out): ModuleList(
|
| 298 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 299 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 300 |
+
)
|
| 301 |
+
(pos_encoder): PositionalEncoding(
|
| 302 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 303 |
+
)
|
| 304 |
+
)
|
| 305 |
+
)
|
| 306 |
+
(norms): ModuleList(
|
| 307 |
+
(0-1): 2 x LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 308 |
+
)
|
| 309 |
+
(ff): FeedForward(
|
| 310 |
+
(net): ModuleList(
|
| 311 |
+
(0): GEGLU(
|
| 312 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 313 |
+
)
|
| 314 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 315 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 316 |
+
)
|
| 317 |
+
)
|
| 318 |
+
(ff_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 319 |
+
)
|
| 320 |
+
)
|
| 321 |
+
(proj_out): Linear(in_features=1280, out_features=1280, bias=True)
|
| 322 |
+
)
|
| 323 |
+
)
|
| 324 |
+
)
|
| 325 |
+
(downsamplers): ModuleList(
|
| 326 |
+
(0): Downsample3D(
|
| 327 |
+
(conv): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 328 |
+
)
|
| 329 |
+
)
|
| 330 |
+
)
|
| 331 |
+
(3): DownBlock3D(
|
| 332 |
+
(resnets): ModuleList(
|
| 333 |
+
(0-1): 2 x ResnetBlock3D(
|
| 334 |
+
(norm1): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 335 |
+
(conv1): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 336 |
+
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
| 337 |
+
(norm2): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 338 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 339 |
+
(conv2): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 340 |
+
(nonlinearity): SiLU()
|
| 341 |
+
)
|
| 342 |
+
)
|
| 343 |
+
(motion_modules): ModuleList(
|
| 344 |
+
(0-1): 2 x VanillaTemporalModule(
|
| 345 |
+
(temporal_transformer): TemporalTransformer3DModel(
|
| 346 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 347 |
+
(proj_in): Linear(in_features=1280, out_features=1280, bias=True)
|
| 348 |
+
(transformer_blocks): ModuleList(
|
| 349 |
+
(0): TemporalTransformerBlock(
|
| 350 |
+
(attention_blocks): ModuleList(
|
| 351 |
+
(0-1): 2 x VersatileAttention(
|
| 352 |
+
(Module Info) Attention_Mode: Temporal, Is_Cross_Attention: False
|
| 353 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 354 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 355 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 356 |
+
(to_out): ModuleList(
|
| 357 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 358 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 359 |
+
)
|
| 360 |
+
(pos_encoder): PositionalEncoding(
|
| 361 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 362 |
+
)
|
| 363 |
+
)
|
| 364 |
+
)
|
| 365 |
+
(norms): ModuleList(
|
| 366 |
+
(0-1): 2 x LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 367 |
+
)
|
| 368 |
+
(ff): FeedForward(
|
| 369 |
+
(net): ModuleList(
|
| 370 |
+
(0): GEGLU(
|
| 371 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 372 |
+
)
|
| 373 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 374 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 375 |
+
)
|
| 376 |
+
)
|
| 377 |
+
(ff_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 378 |
+
)
|
| 379 |
+
)
|
| 380 |
+
(proj_out): Linear(in_features=1280, out_features=1280, bias=True)
|
| 381 |
+
)
|
| 382 |
+
)
|
| 383 |
+
)
|
| 384 |
+
)
|
| 385 |
+
)
|
| 386 |
+
(up_blocks): ModuleList(
|
| 387 |
+
(0): UpBlock3D(
|
| 388 |
+
(resnets): ModuleList(
|
| 389 |
+
(0-2): 3 x ResnetBlock3D(
|
| 390 |
+
(norm1): InflatedGroupNorm(32, 2560, eps=1e-05, affine=True)
|
| 391 |
+
(conv1): InflatedConv3d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 392 |
+
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
| 393 |
+
(norm2): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 394 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 395 |
+
(conv2): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 396 |
+
(nonlinearity): SiLU()
|
| 397 |
+
(conv_shortcut): InflatedConv3d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 398 |
+
)
|
| 399 |
+
)
|
| 400 |
+
(motion_modules): ModuleList(
|
| 401 |
+
(0-2): 3 x VanillaTemporalModule(
|
| 402 |
+
(temporal_transformer): TemporalTransformer3DModel(
|
| 403 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 404 |
+
(proj_in): Linear(in_features=1280, out_features=1280, bias=True)
|
| 405 |
+
(transformer_blocks): ModuleList(
|
| 406 |
+
(0): TemporalTransformerBlock(
|
| 407 |
+
(attention_blocks): ModuleList(
|
| 408 |
+
(0-1): 2 x VersatileAttention(
|
| 409 |
+
(Module Info) Attention_Mode: Temporal, Is_Cross_Attention: False
|
| 410 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 411 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 412 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 413 |
+
(to_out): ModuleList(
|
| 414 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 415 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 416 |
+
)
|
| 417 |
+
(pos_encoder): PositionalEncoding(
|
| 418 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 419 |
+
)
|
| 420 |
+
)
|
| 421 |
+
)
|
| 422 |
+
(norms): ModuleList(
|
| 423 |
+
(0-1): 2 x LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 424 |
+
)
|
| 425 |
+
(ff): FeedForward(
|
| 426 |
+
(net): ModuleList(
|
| 427 |
+
(0): GEGLU(
|
| 428 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 429 |
+
)
|
| 430 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 431 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 432 |
+
)
|
| 433 |
+
)
|
| 434 |
+
(ff_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 435 |
+
)
|
| 436 |
+
)
|
| 437 |
+
(proj_out): Linear(in_features=1280, out_features=1280, bias=True)
|
| 438 |
+
)
|
| 439 |
+
)
|
| 440 |
+
)
|
| 441 |
+
(upsamplers): ModuleList(
|
| 442 |
+
(0): Upsample3D(
|
| 443 |
+
(conv): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 444 |
+
)
|
| 445 |
+
)
|
| 446 |
+
)
|
| 447 |
+
(1): CrossAttnUpBlock3D(
|
| 448 |
+
(attentions): ModuleList(
|
| 449 |
+
(0-2): 3 x Transformer3DModel(
|
| 450 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 451 |
+
(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 452 |
+
(transformer_blocks): ModuleList(
|
| 453 |
+
(0): TemporalBasicTransformerBlock(
|
| 454 |
+
(attn1): Attention(
|
| 455 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 456 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 457 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 458 |
+
(to_out): ModuleList(
|
| 459 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 460 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 461 |
+
)
|
| 462 |
+
)
|
| 463 |
+
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 464 |
+
(attn2): Attention(
|
| 465 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 466 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 467 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 468 |
+
(to_out): ModuleList(
|
| 469 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 470 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 471 |
+
)
|
| 472 |
+
)
|
| 473 |
+
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 474 |
+
(ff): FeedForward(
|
| 475 |
+
(net): ModuleList(
|
| 476 |
+
(0): GEGLU(
|
| 477 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 478 |
+
)
|
| 479 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 480 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 481 |
+
)
|
| 482 |
+
)
|
| 483 |
+
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 484 |
+
)
|
| 485 |
+
)
|
| 486 |
+
(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 487 |
+
)
|
| 488 |
+
)
|
| 489 |
+
(resnets): ModuleList(
|
| 490 |
+
(0-1): 2 x ResnetBlock3D(
|
| 491 |
+
(norm1): InflatedGroupNorm(32, 2560, eps=1e-05, affine=True)
|
| 492 |
+
(conv1): InflatedConv3d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 493 |
+
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
| 494 |
+
(norm2): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 495 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 496 |
+
(conv2): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 497 |
+
(nonlinearity): SiLU()
|
| 498 |
+
(conv_shortcut): InflatedConv3d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 499 |
+
)
|
| 500 |
+
(2): ResnetBlock3D(
|
| 501 |
+
(norm1): InflatedGroupNorm(32, 1920, eps=1e-05, affine=True)
|
| 502 |
+
(conv1): InflatedConv3d(1920, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 503 |
+
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
| 504 |
+
(norm2): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 505 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 506 |
+
(conv2): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 507 |
+
(nonlinearity): SiLU()
|
| 508 |
+
(conv_shortcut): InflatedConv3d(1920, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 509 |
+
)
|
| 510 |
+
)
|
| 511 |
+
(motion_modules): ModuleList(
|
| 512 |
+
(0-2): 3 x VanillaTemporalModule(
|
| 513 |
+
(temporal_transformer): TemporalTransformer3DModel(
|
| 514 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 515 |
+
(proj_in): Linear(in_features=1280, out_features=1280, bias=True)
|
| 516 |
+
(transformer_blocks): ModuleList(
|
| 517 |
+
(0): TemporalTransformerBlock(
|
| 518 |
+
(attention_blocks): ModuleList(
|
| 519 |
+
(0-1): 2 x VersatileAttention(
|
| 520 |
+
(Module Info) Attention_Mode: Temporal, Is_Cross_Attention: False
|
| 521 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 522 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 523 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 524 |
+
(to_out): ModuleList(
|
| 525 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 526 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 527 |
+
)
|
| 528 |
+
(pos_encoder): PositionalEncoding(
|
| 529 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 530 |
+
)
|
| 531 |
+
)
|
| 532 |
+
)
|
| 533 |
+
(norms): ModuleList(
|
| 534 |
+
(0-1): 2 x LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 535 |
+
)
|
| 536 |
+
(ff): FeedForward(
|
| 537 |
+
(net): ModuleList(
|
| 538 |
+
(0): GEGLU(
|
| 539 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 540 |
+
)
|
| 541 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 542 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 543 |
+
)
|
| 544 |
+
)
|
| 545 |
+
(ff_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 546 |
+
)
|
| 547 |
+
)
|
| 548 |
+
(proj_out): Linear(in_features=1280, out_features=1280, bias=True)
|
| 549 |
+
)
|
| 550 |
+
)
|
| 551 |
+
)
|
| 552 |
+
(upsamplers): ModuleList(
|
| 553 |
+
(0): Upsample3D(
|
| 554 |
+
(conv): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 555 |
+
)
|
| 556 |
+
)
|
| 557 |
+
)
|
| 558 |
+
(2): CrossAttnUpBlock3D(
|
| 559 |
+
(attentions): ModuleList(
|
| 560 |
+
(0-2): 3 x Transformer3DModel(
|
| 561 |
+
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
| 562 |
+
(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 563 |
+
(transformer_blocks): ModuleList(
|
| 564 |
+
(0): TemporalBasicTransformerBlock(
|
| 565 |
+
(attn1): Attention(
|
| 566 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 567 |
+
(to_k): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 568 |
+
(to_v): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 569 |
+
(to_out): ModuleList(
|
| 570 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 571 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 572 |
+
)
|
| 573 |
+
)
|
| 574 |
+
(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 575 |
+
(attn2): Attention(
|
| 576 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 577 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)
|
| 578 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)
|
| 579 |
+
(to_out): ModuleList(
|
| 580 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 581 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 582 |
+
)
|
| 583 |
+
)
|
| 584 |
+
(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 585 |
+
(ff): FeedForward(
|
| 586 |
+
(net): ModuleList(
|
| 587 |
+
(0): GEGLU(
|
| 588 |
+
(proj): LoRACompatibleLinear(in_features=640, out_features=5120, bias=True)
|
| 589 |
+
)
|
| 590 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 591 |
+
(2): LoRACompatibleLinear(in_features=2560, out_features=640, bias=True)
|
| 592 |
+
)
|
| 593 |
+
)
|
| 594 |
+
(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 595 |
+
)
|
| 596 |
+
)
|
| 597 |
+
(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 598 |
+
)
|
| 599 |
+
)
|
| 600 |
+
(resnets): ModuleList(
|
| 601 |
+
(0): ResnetBlock3D(
|
| 602 |
+
(norm1): InflatedGroupNorm(32, 1920, eps=1e-05, affine=True)
|
| 603 |
+
(conv1): InflatedConv3d(1920, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 604 |
+
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
| 605 |
+
(norm2): InflatedGroupNorm(32, 640, eps=1e-05, affine=True)
|
| 606 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 607 |
+
(conv2): InflatedConv3d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 608 |
+
(nonlinearity): SiLU()
|
| 609 |
+
(conv_shortcut): InflatedConv3d(1920, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 610 |
+
)
|
| 611 |
+
(1): ResnetBlock3D(
|
| 612 |
+
(norm1): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 613 |
+
(conv1): InflatedConv3d(1280, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 614 |
+
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
| 615 |
+
(norm2): InflatedGroupNorm(32, 640, eps=1e-05, affine=True)
|
| 616 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 617 |
+
(conv2): InflatedConv3d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 618 |
+
(nonlinearity): SiLU()
|
| 619 |
+
(conv_shortcut): InflatedConv3d(1280, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 620 |
+
)
|
| 621 |
+
(2): ResnetBlock3D(
|
| 622 |
+
(norm1): InflatedGroupNorm(32, 960, eps=1e-05, affine=True)
|
| 623 |
+
(conv1): InflatedConv3d(960, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 624 |
+
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
| 625 |
+
(norm2): InflatedGroupNorm(32, 640, eps=1e-05, affine=True)
|
| 626 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 627 |
+
(conv2): InflatedConv3d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 628 |
+
(nonlinearity): SiLU()
|
| 629 |
+
(conv_shortcut): InflatedConv3d(960, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 630 |
+
)
|
| 631 |
+
)
|
| 632 |
+
(motion_modules): ModuleList(
|
| 633 |
+
(0-2): 3 x VanillaTemporalModule(
|
| 634 |
+
(temporal_transformer): TemporalTransformer3DModel(
|
| 635 |
+
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
| 636 |
+
(proj_in): Linear(in_features=640, out_features=640, bias=True)
|
| 637 |
+
(transformer_blocks): ModuleList(
|
| 638 |
+
(0): TemporalTransformerBlock(
|
| 639 |
+
(attention_blocks): ModuleList(
|
| 640 |
+
(0-1): 2 x VersatileAttention(
|
| 641 |
+
(Module Info) Attention_Mode: Temporal, Is_Cross_Attention: False
|
| 642 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 643 |
+
(to_k): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 644 |
+
(to_v): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 645 |
+
(to_out): ModuleList(
|
| 646 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 647 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 648 |
+
)
|
| 649 |
+
(pos_encoder): PositionalEncoding(
|
| 650 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 651 |
+
)
|
| 652 |
+
)
|
| 653 |
+
)
|
| 654 |
+
(norms): ModuleList(
|
| 655 |
+
(0-1): 2 x LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 656 |
+
)
|
| 657 |
+
(ff): FeedForward(
|
| 658 |
+
(net): ModuleList(
|
| 659 |
+
(0): GEGLU(
|
| 660 |
+
(proj): LoRACompatibleLinear(in_features=640, out_features=5120, bias=True)
|
| 661 |
+
)
|
| 662 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 663 |
+
(2): LoRACompatibleLinear(in_features=2560, out_features=640, bias=True)
|
| 664 |
+
)
|
| 665 |
+
)
|
| 666 |
+
(ff_norm): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 667 |
+
)
|
| 668 |
+
)
|
| 669 |
+
(proj_out): Linear(in_features=640, out_features=640, bias=True)
|
| 670 |
+
)
|
| 671 |
+
)
|
| 672 |
+
)
|
| 673 |
+
(upsamplers): ModuleList(
|
| 674 |
+
(0): Upsample3D(
|
| 675 |
+
(conv): InflatedConv3d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 676 |
+
)
|
| 677 |
+
)
|
| 678 |
+
)
|
| 679 |
+
(3): CrossAttnUpBlock3D(
|
| 680 |
+
(attentions): ModuleList(
|
| 681 |
+
(0-2): 3 x Transformer3DModel(
|
| 682 |
+
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
| 683 |
+
(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 684 |
+
(transformer_blocks): ModuleList(
|
| 685 |
+
(0): TemporalBasicTransformerBlock(
|
| 686 |
+
(attn1): Attention(
|
| 687 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 688 |
+
(to_k): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 689 |
+
(to_v): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 690 |
+
(to_out): ModuleList(
|
| 691 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 692 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 693 |
+
)
|
| 694 |
+
)
|
| 695 |
+
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 696 |
+
(attn2): Attention(
|
| 697 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 698 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)
|
| 699 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)
|
| 700 |
+
(to_out): ModuleList(
|
| 701 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 702 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 703 |
+
)
|
| 704 |
+
)
|
| 705 |
+
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 706 |
+
(ff): FeedForward(
|
| 707 |
+
(net): ModuleList(
|
| 708 |
+
(0): GEGLU(
|
| 709 |
+
(proj): LoRACompatibleLinear(in_features=320, out_features=2560, bias=True)
|
| 710 |
+
)
|
| 711 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 712 |
+
(2): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
|
| 713 |
+
)
|
| 714 |
+
)
|
| 715 |
+
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 716 |
+
)
|
| 717 |
+
)
|
| 718 |
+
(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 719 |
+
)
|
| 720 |
+
)
|
| 721 |
+
(resnets): ModuleList(
|
| 722 |
+
(0): ResnetBlock3D(
|
| 723 |
+
(norm1): InflatedGroupNorm(32, 960, eps=1e-05, affine=True)
|
| 724 |
+
(conv1): InflatedConv3d(960, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 725 |
+
(time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
|
| 726 |
+
(norm2): InflatedGroupNorm(32, 320, eps=1e-05, affine=True)
|
| 727 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 728 |
+
(conv2): InflatedConv3d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 729 |
+
(nonlinearity): SiLU()
|
| 730 |
+
(conv_shortcut): InflatedConv3d(960, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 731 |
+
)
|
| 732 |
+
(1-2): 2 x ResnetBlock3D(
|
| 733 |
+
(norm1): InflatedGroupNorm(32, 640, eps=1e-05, affine=True)
|
| 734 |
+
(conv1): InflatedConv3d(640, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 735 |
+
(time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
|
| 736 |
+
(norm2): InflatedGroupNorm(32, 320, eps=1e-05, affine=True)
|
| 737 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 738 |
+
(conv2): InflatedConv3d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 739 |
+
(nonlinearity): SiLU()
|
| 740 |
+
(conv_shortcut): InflatedConv3d(640, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 741 |
+
)
|
| 742 |
+
)
|
| 743 |
+
(motion_modules): ModuleList(
|
| 744 |
+
(0-2): 3 x VanillaTemporalModule(
|
| 745 |
+
(temporal_transformer): TemporalTransformer3DModel(
|
| 746 |
+
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
| 747 |
+
(proj_in): Linear(in_features=320, out_features=320, bias=True)
|
| 748 |
+
(transformer_blocks): ModuleList(
|
| 749 |
+
(0): TemporalTransformerBlock(
|
| 750 |
+
(attention_blocks): ModuleList(
|
| 751 |
+
(0-1): 2 x VersatileAttention(
|
| 752 |
+
(Module Info) Attention_Mode: Temporal, Is_Cross_Attention: False
|
| 753 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 754 |
+
(to_k): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 755 |
+
(to_v): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 756 |
+
(to_out): ModuleList(
|
| 757 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 758 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 759 |
+
)
|
| 760 |
+
(pos_encoder): PositionalEncoding(
|
| 761 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 762 |
+
)
|
| 763 |
+
)
|
| 764 |
+
)
|
| 765 |
+
(norms): ModuleList(
|
| 766 |
+
(0-1): 2 x LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 767 |
+
)
|
| 768 |
+
(ff): FeedForward(
|
| 769 |
+
(net): ModuleList(
|
| 770 |
+
(0): GEGLU(
|
| 771 |
+
(proj): LoRACompatibleLinear(in_features=320, out_features=2560, bias=True)
|
| 772 |
+
)
|
| 773 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 774 |
+
(2): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
|
| 775 |
+
)
|
| 776 |
+
)
|
| 777 |
+
(ff_norm): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 778 |
+
)
|
| 779 |
+
)
|
| 780 |
+
(proj_out): Linear(in_features=320, out_features=320, bias=True)
|
| 781 |
+
)
|
| 782 |
+
)
|
| 783 |
+
)
|
| 784 |
+
)
|
| 785 |
+
)
|
| 786 |
+
(mid_block): UNetMidBlock3DCrossAttn(
|
| 787 |
+
(attentions): ModuleList(
|
| 788 |
+
(0): Transformer3DModel(
|
| 789 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 790 |
+
(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 791 |
+
(transformer_blocks): ModuleList(
|
| 792 |
+
(0): TemporalBasicTransformerBlock(
|
| 793 |
+
(attn1): Attention(
|
| 794 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 795 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 796 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 797 |
+
(to_out): ModuleList(
|
| 798 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 799 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 800 |
+
)
|
| 801 |
+
)
|
| 802 |
+
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 803 |
+
(attn2): Attention(
|
| 804 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 805 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 806 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 807 |
+
(to_out): ModuleList(
|
| 808 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 809 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 810 |
+
)
|
| 811 |
+
)
|
| 812 |
+
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 813 |
+
(ff): FeedForward(
|
| 814 |
+
(net): ModuleList(
|
| 815 |
+
(0): GEGLU(
|
| 816 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 817 |
+
)
|
| 818 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 819 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 820 |
+
)
|
| 821 |
+
)
|
| 822 |
+
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 823 |
+
)
|
| 824 |
+
)
|
| 825 |
+
(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 826 |
+
)
|
| 827 |
+
)
|
| 828 |
+
(resnets): ModuleList(
|
| 829 |
+
(0-1): 2 x ResnetBlock3D(
|
| 830 |
+
(norm1): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 831 |
+
(conv1): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 832 |
+
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
| 833 |
+
(norm2): InflatedGroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 834 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 835 |
+
(conv2): InflatedConv3d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 836 |
+
(nonlinearity): SiLU()
|
| 837 |
+
)
|
| 838 |
+
)
|
| 839 |
+
(motion_modules): ModuleList(
|
| 840 |
+
(0): VanillaTemporalModule(
|
| 841 |
+
(temporal_transformer): TemporalTransformer3DModel(
|
| 842 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 843 |
+
(proj_in): Linear(in_features=1280, out_features=1280, bias=True)
|
| 844 |
+
(transformer_blocks): ModuleList(
|
| 845 |
+
(0): TemporalTransformerBlock(
|
| 846 |
+
(attention_blocks): ModuleList(
|
| 847 |
+
(0-1): 2 x VersatileAttention(
|
| 848 |
+
(Module Info) Attention_Mode: Temporal, Is_Cross_Attention: False
|
| 849 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 850 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 851 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 852 |
+
(to_out): ModuleList(
|
| 853 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 854 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 855 |
+
)
|
| 856 |
+
(pos_encoder): PositionalEncoding(
|
| 857 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 858 |
+
)
|
| 859 |
+
)
|
| 860 |
+
)
|
| 861 |
+
(norms): ModuleList(
|
| 862 |
+
(0-1): 2 x LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 863 |
+
)
|
| 864 |
+
(ff): FeedForward(
|
| 865 |
+
(net): ModuleList(
|
| 866 |
+
(0): GEGLU(
|
| 867 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 868 |
+
)
|
| 869 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 870 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 871 |
+
)
|
| 872 |
+
)
|
| 873 |
+
(ff_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 874 |
+
)
|
| 875 |
+
)
|
| 876 |
+
(proj_out): Linear(in_features=1280, out_features=1280, bias=True)
|
| 877 |
+
)
|
| 878 |
+
)
|
| 879 |
+
)
|
| 880 |
+
)
|
| 881 |
+
(conv_norm_out): InflatedGroupNorm(32, 320, eps=1e-05, affine=True)
|
| 882 |
+
(conv_act): SiLU()
|
| 883 |
+
(conv_out): InflatedConv3d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 884 |
+
)
|
| 885 |
+
Reference UNet structure:
|
| 886 |
+
UNet2DConditionModel(
|
| 887 |
+
(conv_in): Conv2d(5, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 888 |
+
(time_proj): Timesteps()
|
| 889 |
+
(time_embedding): TimestepEmbedding(
|
| 890 |
+
(linear_1): LoRACompatibleLinear(in_features=320, out_features=1280, bias=True)
|
| 891 |
+
(act): SiLU()
|
| 892 |
+
(linear_2): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 893 |
+
)
|
| 894 |
+
(down_blocks): ModuleList(
|
| 895 |
+
(0): CrossAttnDownBlock2D(
|
| 896 |
+
(attentions): ModuleList(
|
| 897 |
+
(0-1): 2 x Transformer2DModel(
|
| 898 |
+
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
| 899 |
+
(proj_in): LoRACompatibleConv(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 900 |
+
(transformer_blocks): ModuleList(
|
| 901 |
+
(0): BasicTransformerBlock(
|
| 902 |
+
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 903 |
+
(attn1): Attention(
|
| 904 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 905 |
+
(to_k): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 906 |
+
(to_v): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 907 |
+
(to_out): ModuleList(
|
| 908 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 909 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 910 |
+
)
|
| 911 |
+
)
|
| 912 |
+
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 913 |
+
(attn2): Attention(
|
| 914 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 915 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)
|
| 916 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)
|
| 917 |
+
(to_out): ModuleList(
|
| 918 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 919 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 920 |
+
)
|
| 921 |
+
)
|
| 922 |
+
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 923 |
+
(ff): FeedForward(
|
| 924 |
+
(net): ModuleList(
|
| 925 |
+
(0): GEGLU(
|
| 926 |
+
(proj): LoRACompatibleLinear(in_features=320, out_features=2560, bias=True)
|
| 927 |
+
)
|
| 928 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 929 |
+
(2): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
|
| 930 |
+
)
|
| 931 |
+
)
|
| 932 |
+
)
|
| 933 |
+
)
|
| 934 |
+
(proj_out): LoRACompatibleConv(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 935 |
+
)
|
| 936 |
+
)
|
| 937 |
+
(resnets): ModuleList(
|
| 938 |
+
(0-1): 2 x ResnetBlock2D(
|
| 939 |
+
(norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
|
| 940 |
+
(conv1): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 941 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
|
| 942 |
+
(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
|
| 943 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 944 |
+
(conv2): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 945 |
+
(nonlinearity): SiLU()
|
| 946 |
+
)
|
| 947 |
+
)
|
| 948 |
+
(downsamplers): ModuleList(
|
| 949 |
+
(0): Downsample2D(
|
| 950 |
+
(conv): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 951 |
+
)
|
| 952 |
+
)
|
| 953 |
+
)
|
| 954 |
+
(1): CrossAttnDownBlock2D(
|
| 955 |
+
(attentions): ModuleList(
|
| 956 |
+
(0-1): 2 x Transformer2DModel(
|
| 957 |
+
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
| 958 |
+
(proj_in): LoRACompatibleConv(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 959 |
+
(transformer_blocks): ModuleList(
|
| 960 |
+
(0): BasicTransformerBlock(
|
| 961 |
+
(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 962 |
+
(attn1): Attention(
|
| 963 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 964 |
+
(to_k): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 965 |
+
(to_v): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 966 |
+
(to_out): ModuleList(
|
| 967 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 968 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 969 |
+
)
|
| 970 |
+
)
|
| 971 |
+
(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 972 |
+
(attn2): Attention(
|
| 973 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 974 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)
|
| 975 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)
|
| 976 |
+
(to_out): ModuleList(
|
| 977 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 978 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 979 |
+
)
|
| 980 |
+
)
|
| 981 |
+
(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 982 |
+
(ff): FeedForward(
|
| 983 |
+
(net): ModuleList(
|
| 984 |
+
(0): GEGLU(
|
| 985 |
+
(proj): LoRACompatibleLinear(in_features=640, out_features=5120, bias=True)
|
| 986 |
+
)
|
| 987 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 988 |
+
(2): LoRACompatibleLinear(in_features=2560, out_features=640, bias=True)
|
| 989 |
+
)
|
| 990 |
+
)
|
| 991 |
+
)
|
| 992 |
+
)
|
| 993 |
+
(proj_out): LoRACompatibleConv(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 994 |
+
)
|
| 995 |
+
)
|
| 996 |
+
(resnets): ModuleList(
|
| 997 |
+
(0): ResnetBlock2D(
|
| 998 |
+
(norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
|
| 999 |
+
(conv1): LoRACompatibleConv(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1000 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)
|
| 1001 |
+
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
| 1002 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1003 |
+
(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1004 |
+
(nonlinearity): SiLU()
|
| 1005 |
+
(conv_shortcut): LoRACompatibleConv(320, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 1006 |
+
)
|
| 1007 |
+
(1): ResnetBlock2D(
|
| 1008 |
+
(norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
|
| 1009 |
+
(conv1): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1010 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)
|
| 1011 |
+
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
| 1012 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1013 |
+
(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1014 |
+
(nonlinearity): SiLU()
|
| 1015 |
+
)
|
| 1016 |
+
)
|
| 1017 |
+
(downsamplers): ModuleList(
|
| 1018 |
+
(0): Downsample2D(
|
| 1019 |
+
(conv): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 1020 |
+
)
|
| 1021 |
+
)
|
| 1022 |
+
)
|
| 1023 |
+
(2): CrossAttnDownBlock2D(
|
| 1024 |
+
(attentions): ModuleList(
|
| 1025 |
+
(0-1): 2 x Transformer2DModel(
|
| 1026 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 1027 |
+
(proj_in): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1028 |
+
(transformer_blocks): ModuleList(
|
| 1029 |
+
(0): BasicTransformerBlock(
|
| 1030 |
+
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 1031 |
+
(attn1): Attention(
|
| 1032 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1033 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1034 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1035 |
+
(to_out): ModuleList(
|
| 1036 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1037 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1038 |
+
)
|
| 1039 |
+
)
|
| 1040 |
+
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 1041 |
+
(attn2): Attention(
|
| 1042 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1043 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 1044 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 1045 |
+
(to_out): ModuleList(
|
| 1046 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1047 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1048 |
+
)
|
| 1049 |
+
)
|
| 1050 |
+
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 1051 |
+
(ff): FeedForward(
|
| 1052 |
+
(net): ModuleList(
|
| 1053 |
+
(0): GEGLU(
|
| 1054 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 1055 |
+
)
|
| 1056 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1057 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 1058 |
+
)
|
| 1059 |
+
)
|
| 1060 |
+
)
|
| 1061 |
+
)
|
| 1062 |
+
(proj_out): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1063 |
+
)
|
| 1064 |
+
)
|
| 1065 |
+
(resnets): ModuleList(
|
| 1066 |
+
(0): ResnetBlock2D(
|
| 1067 |
+
(norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
|
| 1068 |
+
(conv1): LoRACompatibleConv(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1069 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1070 |
+
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1071 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1072 |
+
(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1073 |
+
(nonlinearity): SiLU()
|
| 1074 |
+
(conv_shortcut): LoRACompatibleConv(640, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1075 |
+
)
|
| 1076 |
+
(1): ResnetBlock2D(
|
| 1077 |
+
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1078 |
+
(conv1): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1079 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1080 |
+
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1081 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1082 |
+
(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1083 |
+
(nonlinearity): SiLU()
|
| 1084 |
+
)
|
| 1085 |
+
)
|
| 1086 |
+
(downsamplers): ModuleList(
|
| 1087 |
+
(0): Downsample2D(
|
| 1088 |
+
(conv): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 1089 |
+
)
|
| 1090 |
+
)
|
| 1091 |
+
)
|
| 1092 |
+
(3): DownBlock2D(
|
| 1093 |
+
(resnets): ModuleList(
|
| 1094 |
+
(0-1): 2 x ResnetBlock2D(
|
| 1095 |
+
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1096 |
+
(conv1): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1097 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1098 |
+
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1099 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1100 |
+
(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1101 |
+
(nonlinearity): SiLU()
|
| 1102 |
+
)
|
| 1103 |
+
)
|
| 1104 |
+
)
|
| 1105 |
+
)
|
| 1106 |
+
(up_blocks): ModuleList(
|
| 1107 |
+
(0): UpBlock2D(
|
| 1108 |
+
(resnets): ModuleList(
|
| 1109 |
+
(0-2): 3 x ResnetBlock2D(
|
| 1110 |
+
(norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
|
| 1111 |
+
(conv1): LoRACompatibleConv(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1112 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1113 |
+
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1114 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1115 |
+
(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1116 |
+
(nonlinearity): SiLU()
|
| 1117 |
+
(conv_shortcut): LoRACompatibleConv(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1118 |
+
)
|
| 1119 |
+
)
|
| 1120 |
+
(upsamplers): ModuleList(
|
| 1121 |
+
(0): Upsample2D(
|
| 1122 |
+
(conv): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1123 |
+
)
|
| 1124 |
+
)
|
| 1125 |
+
)
|
| 1126 |
+
(1): CrossAttnUpBlock2D(
|
| 1127 |
+
(attentions): ModuleList(
|
| 1128 |
+
(0-2): 3 x Transformer2DModel(
|
| 1129 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 1130 |
+
(proj_in): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1131 |
+
(transformer_blocks): ModuleList(
|
| 1132 |
+
(0): BasicTransformerBlock(
|
| 1133 |
+
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 1134 |
+
(attn1): Attention(
|
| 1135 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1136 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1137 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1138 |
+
(to_out): ModuleList(
|
| 1139 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1140 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1141 |
+
)
|
| 1142 |
+
)
|
| 1143 |
+
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 1144 |
+
(attn2): Attention(
|
| 1145 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1146 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 1147 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 1148 |
+
(to_out): ModuleList(
|
| 1149 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1150 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1151 |
+
)
|
| 1152 |
+
)
|
| 1153 |
+
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 1154 |
+
(ff): FeedForward(
|
| 1155 |
+
(net): ModuleList(
|
| 1156 |
+
(0): GEGLU(
|
| 1157 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 1158 |
+
)
|
| 1159 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1160 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 1161 |
+
)
|
| 1162 |
+
)
|
| 1163 |
+
)
|
| 1164 |
+
)
|
| 1165 |
+
(proj_out): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1166 |
+
)
|
| 1167 |
+
)
|
| 1168 |
+
(resnets): ModuleList(
|
| 1169 |
+
(0-1): 2 x ResnetBlock2D(
|
| 1170 |
+
(norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
|
| 1171 |
+
(conv1): LoRACompatibleConv(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1172 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1173 |
+
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1174 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1175 |
+
(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1176 |
+
(nonlinearity): SiLU()
|
| 1177 |
+
(conv_shortcut): LoRACompatibleConv(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1178 |
+
)
|
| 1179 |
+
(2): ResnetBlock2D(
|
| 1180 |
+
(norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
|
| 1181 |
+
(conv1): LoRACompatibleConv(1920, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1182 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1183 |
+
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1184 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1185 |
+
(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1186 |
+
(nonlinearity): SiLU()
|
| 1187 |
+
(conv_shortcut): LoRACompatibleConv(1920, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1188 |
+
)
|
| 1189 |
+
)
|
| 1190 |
+
(upsamplers): ModuleList(
|
| 1191 |
+
(0): Upsample2D(
|
| 1192 |
+
(conv): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1193 |
+
)
|
| 1194 |
+
)
|
| 1195 |
+
)
|
| 1196 |
+
(2): CrossAttnUpBlock2D(
|
| 1197 |
+
(attentions): ModuleList(
|
| 1198 |
+
(0-2): 3 x Transformer2DModel(
|
| 1199 |
+
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
| 1200 |
+
(proj_in): LoRACompatibleConv(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 1201 |
+
(transformer_blocks): ModuleList(
|
| 1202 |
+
(0): BasicTransformerBlock(
|
| 1203 |
+
(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 1204 |
+
(attn1): Attention(
|
| 1205 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 1206 |
+
(to_k): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 1207 |
+
(to_v): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 1208 |
+
(to_out): ModuleList(
|
| 1209 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 1210 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1211 |
+
)
|
| 1212 |
+
)
|
| 1213 |
+
(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 1214 |
+
(attn2): Attention(
|
| 1215 |
+
(to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)
|
| 1216 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)
|
| 1217 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)
|
| 1218 |
+
(to_out): ModuleList(
|
| 1219 |
+
(0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)
|
| 1220 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1221 |
+
)
|
| 1222 |
+
)
|
| 1223 |
+
(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
| 1224 |
+
(ff): FeedForward(
|
| 1225 |
+
(net): ModuleList(
|
| 1226 |
+
(0): GEGLU(
|
| 1227 |
+
(proj): LoRACompatibleLinear(in_features=640, out_features=5120, bias=True)
|
| 1228 |
+
)
|
| 1229 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1230 |
+
(2): LoRACompatibleLinear(in_features=2560, out_features=640, bias=True)
|
| 1231 |
+
)
|
| 1232 |
+
)
|
| 1233 |
+
)
|
| 1234 |
+
)
|
| 1235 |
+
(proj_out): LoRACompatibleConv(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 1236 |
+
)
|
| 1237 |
+
)
|
| 1238 |
+
(resnets): ModuleList(
|
| 1239 |
+
(0): ResnetBlock2D(
|
| 1240 |
+
(norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
|
| 1241 |
+
(conv1): LoRACompatibleConv(1920, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1242 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)
|
| 1243 |
+
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
| 1244 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1245 |
+
(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1246 |
+
(nonlinearity): SiLU()
|
| 1247 |
+
(conv_shortcut): LoRACompatibleConv(1920, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 1248 |
+
)
|
| 1249 |
+
(1): ResnetBlock2D(
|
| 1250 |
+
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1251 |
+
(conv1): LoRACompatibleConv(1280, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1252 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)
|
| 1253 |
+
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
| 1254 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1255 |
+
(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1256 |
+
(nonlinearity): SiLU()
|
| 1257 |
+
(conv_shortcut): LoRACompatibleConv(1280, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 1258 |
+
)
|
| 1259 |
+
(2): ResnetBlock2D(
|
| 1260 |
+
(norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
|
| 1261 |
+
(conv1): LoRACompatibleConv(960, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1262 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)
|
| 1263 |
+
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
| 1264 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1265 |
+
(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1266 |
+
(nonlinearity): SiLU()
|
| 1267 |
+
(conv_shortcut): LoRACompatibleConv(960, 640, kernel_size=(1, 1), stride=(1, 1))
|
| 1268 |
+
)
|
| 1269 |
+
)
|
| 1270 |
+
(upsamplers): ModuleList(
|
| 1271 |
+
(0): Upsample2D(
|
| 1272 |
+
(conv): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1273 |
+
)
|
| 1274 |
+
)
|
| 1275 |
+
)
|
| 1276 |
+
(3): CrossAttnUpBlock2D(
|
| 1277 |
+
(attentions): ModuleList(
|
| 1278 |
+
(0-2): 3 x Transformer2DModel(
|
| 1279 |
+
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
| 1280 |
+
(proj_in): LoRACompatibleConv(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 1281 |
+
(transformer_blocks): ModuleList(
|
| 1282 |
+
(0): BasicTransformerBlock(
|
| 1283 |
+
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 1284 |
+
(attn1): Attention(
|
| 1285 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 1286 |
+
(to_k): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 1287 |
+
(to_v): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 1288 |
+
(to_out): ModuleList(
|
| 1289 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 1290 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1291 |
+
)
|
| 1292 |
+
)
|
| 1293 |
+
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 1294 |
+
(attn2): Attention(
|
| 1295 |
+
(to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)
|
| 1296 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)
|
| 1297 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)
|
| 1298 |
+
(to_out): ModuleList(
|
| 1299 |
+
(0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)
|
| 1300 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1301 |
+
)
|
| 1302 |
+
)
|
| 1303 |
+
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
| 1304 |
+
(ff): FeedForward(
|
| 1305 |
+
(net): ModuleList(
|
| 1306 |
+
(0): GEGLU(
|
| 1307 |
+
(proj): LoRACompatibleLinear(in_features=320, out_features=2560, bias=True)
|
| 1308 |
+
)
|
| 1309 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1310 |
+
(2): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
|
| 1311 |
+
)
|
| 1312 |
+
)
|
| 1313 |
+
)
|
| 1314 |
+
)
|
| 1315 |
+
(proj_out): LoRACompatibleConv(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 1316 |
+
)
|
| 1317 |
+
)
|
| 1318 |
+
(resnets): ModuleList(
|
| 1319 |
+
(0): ResnetBlock2D(
|
| 1320 |
+
(norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
|
| 1321 |
+
(conv1): LoRACompatibleConv(960, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1322 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
|
| 1323 |
+
(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
|
| 1324 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1325 |
+
(conv2): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1326 |
+
(nonlinearity): SiLU()
|
| 1327 |
+
(conv_shortcut): LoRACompatibleConv(960, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 1328 |
+
)
|
| 1329 |
+
(1-2): 2 x ResnetBlock2D(
|
| 1330 |
+
(norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
|
| 1331 |
+
(conv1): LoRACompatibleConv(640, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1332 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
|
| 1333 |
+
(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
|
| 1334 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1335 |
+
(conv2): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1336 |
+
(nonlinearity): SiLU()
|
| 1337 |
+
(conv_shortcut): LoRACompatibleConv(640, 320, kernel_size=(1, 1), stride=(1, 1))
|
| 1338 |
+
)
|
| 1339 |
+
)
|
| 1340 |
+
)
|
| 1341 |
+
)
|
| 1342 |
+
(mid_block): UNetMidBlock2DCrossAttn(
|
| 1343 |
+
(attentions): ModuleList(
|
| 1344 |
+
(0): Transformer2DModel(
|
| 1345 |
+
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
| 1346 |
+
(proj_in): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1347 |
+
(transformer_blocks): ModuleList(
|
| 1348 |
+
(0): BasicTransformerBlock(
|
| 1349 |
+
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 1350 |
+
(attn1): Attention(
|
| 1351 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1352 |
+
(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1353 |
+
(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1354 |
+
(to_out): ModuleList(
|
| 1355 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1356 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1357 |
+
)
|
| 1358 |
+
)
|
| 1359 |
+
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 1360 |
+
(attn2): Attention(
|
| 1361 |
+
(to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)
|
| 1362 |
+
(to_k): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 1363 |
+
(to_v): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)
|
| 1364 |
+
(to_out): ModuleList(
|
| 1365 |
+
(0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1366 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1367 |
+
)
|
| 1368 |
+
)
|
| 1369 |
+
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
| 1370 |
+
(ff): FeedForward(
|
| 1371 |
+
(net): ModuleList(
|
| 1372 |
+
(0): GEGLU(
|
| 1373 |
+
(proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True)
|
| 1374 |
+
)
|
| 1375 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1376 |
+
(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)
|
| 1377 |
+
)
|
| 1378 |
+
)
|
| 1379 |
+
)
|
| 1380 |
+
)
|
| 1381 |
+
(proj_out): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
| 1382 |
+
)
|
| 1383 |
+
)
|
| 1384 |
+
(resnets): ModuleList(
|
| 1385 |
+
(0-1): 2 x ResnetBlock2D(
|
| 1386 |
+
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1387 |
+
(conv1): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1388 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)
|
| 1389 |
+
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
| 1390 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 1391 |
+
(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1392 |
+
(nonlinearity): SiLU()
|
| 1393 |
+
)
|
| 1394 |
+
)
|
| 1395 |
+
)
|
| 1396 |
+
(conv_norm_out): None
|
| 1397 |
+
(conv_act): SiLU()
|
| 1398 |
+
)
|
| 1399 |
+
Pose Guider structure:
|
| 1400 |
+
PoseGuider(
|
| 1401 |
+
(conv_in): InflatedConv3d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1402 |
+
(blocks): ModuleList(
|
| 1403 |
+
(0): InflatedConv3d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1404 |
+
(1): InflatedConv3d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 1405 |
+
(2): InflatedConv3d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1406 |
+
(3): InflatedConv3d(32, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 1407 |
+
(4): InflatedConv3d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1408 |
+
(5): InflatedConv3d(96, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 1409 |
+
)
|
| 1410 |
+
(conv_out): InflatedConv3d(256, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1411 |
+
)
|
| 1412 |
+
image_enc:
|
| 1413 |
+
CLIPVisionModelWithProjection(
|
| 1414 |
+
(vision_model): CLIPVisionTransformer(
|
| 1415 |
+
(embeddings): CLIPVisionEmbeddings(
|
| 1416 |
+
(patch_embedding): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14), bias=False)
|
| 1417 |
+
(position_embedding): Embedding(257, 1024)
|
| 1418 |
+
)
|
| 1419 |
+
(pre_layrnorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 1420 |
+
(encoder): CLIPEncoder(
|
| 1421 |
+
(layers): ModuleList(
|
| 1422 |
+
(0-23): 24 x CLIPEncoderLayer(
|
| 1423 |
+
(self_attn): CLIPAttention(
|
| 1424 |
+
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
|
| 1425 |
+
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
|
| 1426 |
+
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
|
| 1427 |
+
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
|
| 1428 |
+
)
|
| 1429 |
+
(layer_norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 1430 |
+
(mlp): CLIPMLP(
|
| 1431 |
+
(activation_fn): QuickGELUActivation()
|
| 1432 |
+
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
|
| 1433 |
+
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
|
| 1434 |
+
)
|
| 1435 |
+
(layer_norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 1436 |
+
)
|
| 1437 |
+
)
|
| 1438 |
+
)
|
| 1439 |
+
(post_layernorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 1440 |
+
)
|
| 1441 |
+
(visual_projection): Linear(in_features=1024, out_features=768, bias=False)
|
| 1442 |
+
)
|
| 1443 |
+
Pose Guider structure:
|
| 1444 |
+
PoseGuider(
|
| 1445 |
+
(conv_in): InflatedConv3d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1446 |
+
(blocks): ModuleList(
|
| 1447 |
+
(0): InflatedConv3d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1448 |
+
(1): InflatedConv3d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 1449 |
+
(2): InflatedConv3d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1450 |
+
(3): InflatedConv3d(32, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 1451 |
+
(4): InflatedConv3d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1452 |
+
(5): InflatedConv3d(96, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 1453 |
+
)
|
| 1454 |
+
(conv_out): InflatedConv3d(256, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1455 |
+
)
|
| 1456 |
+
pipe:
|
| 1457 |
+
Pose2VideoPipeline {
|
| 1458 |
+
"_class_name": "Pose2VideoPipeline",
|
| 1459 |
+
"_diffusers_version": "0.24.0",
|
| 1460 |
+
"denoising_unet": [
|
| 1461 |
+
"src.models.unet_3d",
|
| 1462 |
+
"UNet3DConditionModel"
|
| 1463 |
+
],
|
| 1464 |
+
"image_encoder": [
|
| 1465 |
+
"transformers",
|
| 1466 |
+
"CLIPVisionModelWithProjection"
|
| 1467 |
+
],
|
| 1468 |
+
"image_proj_model": [
|
| 1469 |
+
null,
|
| 1470 |
+
null
|
| 1471 |
+
],
|
| 1472 |
+
"pose_guider": [
|
| 1473 |
+
"src.models.pose_guider",
|
| 1474 |
+
"PoseGuider"
|
| 1475 |
+
],
|
| 1476 |
+
"reference_unet": [
|
| 1477 |
+
"src.models.unet_2d_condition",
|
| 1478 |
+
"UNet2DConditionModel"
|
| 1479 |
+
],
|
| 1480 |
+
"scheduler": [
|
| 1481 |
+
"diffusers",
|
| 1482 |
+
"DDIMScheduler"
|
| 1483 |
+
],
|
| 1484 |
+
"text_encoder": [
|
| 1485 |
+
null,
|
| 1486 |
+
null
|
| 1487 |
+
],
|
| 1488 |
+
"tokenizer": [
|
| 1489 |
+
null,
|
| 1490 |
+
null
|
| 1491 |
+
],
|
| 1492 |
+
"vae": [
|
| 1493 |
+
"diffusers",
|
| 1494 |
+
"AutoencoderKL"
|
| 1495 |
+
]
|
| 1496 |
+
}
|
| 1497 |
+
|
myoutput.log
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
nohup: ignoring input
|
| 2 |
+
nohup: failed to run command 'CUDA_VISIBLE_DEVICES=2': No such file or directory
|
nohup.out
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
output.log
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
nohup: ignoring input
|
| 2 |
+
nohup: failed to run command 'CUDA_VISIBLE_DEVICES=2': No such file or directory
|
output/20241207/1929--seed_42-384x512/upper1_00057_00_512x384_3_1929.mp4
ADDED
|
Binary file (233 kB). View file
|
|
|
output/20241207/2241--seed_42-384x512/3_s_1110342_in_xl_512x384_3_2241.mp4
ADDED
|
Binary file (194 kB). View file
|
|
|
output/20241207/2241--seed_42-384x512/7_s_1110342_in_xl_512x384_3_2241.mp4
ADDED
|
Binary file (196 kB). View file
|
|
|
output/20241207/2241--seed_42-384x512/8_s_1009794_in_xl_512x384_3_2241.mp4
ADDED
|
Binary file (201 kB). View file
|
|
|
output/20241207/2241--seed_42-384x512/8_s_1110342_in_xl_512x384_3_2241.mp4
ADDED
|
Binary file (201 kB). View file
|
|
|
read.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import yaml
|
| 2 |
+
import os
|
| 3 |
+
# 假设对应关系存储在名为 "file_pairs.txt" 的文本文件中
|
| 4 |
+
file_pairs_file = "./dataset/ViViD/upper_body/test_pairs.txt"
|
| 5 |
+
output_yaml_path = "./configs/prompts/upper_body2.yaml" # 输出的 YAML 文件路径
|
| 6 |
+
videos_dir = "./dataset/ViViD/upper_body/videos"
|
| 7 |
+
images_dir = "./dataset/ViViD/upper_body/images"
|
| 8 |
+
# 准备要写入 YAML 的数据结构
|
| 9 |
+
yaml_data = {
|
| 10 |
+
"pretrained_base_model_path": "ckpts/sd-image-variations-diffusers",
|
| 11 |
+
"pretrained_vae_path": "ckpts/sd-vae-ft-mse",
|
| 12 |
+
"image_encoder_path": "ckpts/sd-image-variations-diffusers/image_encoder",
|
| 13 |
+
"denoising_unet_path": "ckpts/ViViD/denoising_unet.pth",
|
| 14 |
+
"reference_unet_path": "ckpts/ViViD/reference_unet.pth",
|
| 15 |
+
"pose_guider_path": "ckpts/ViViD/pose_guider.pth",
|
| 16 |
+
"motion_module_path": "ckpts/MotionModule/mm_sd_v15_v2.ckpt",
|
| 17 |
+
"inference_config": "./configs/inference/inference.yaml",
|
| 18 |
+
"weight_dtype": "fp16",
|
| 19 |
+
"model_video_paths": [],
|
| 20 |
+
"cloth_image_paths": []
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# 读取文本文件并填充 YAML 数据结构
|
| 25 |
+
with open(file_pairs_file, 'r') as file:
|
| 26 |
+
for line in file:
|
| 27 |
+
# 每行可能是 "视频文件路径 对应图像文件路径"
|
| 28 |
+
video_file_name, image_file_name = line.strip().split() # 假设用空格分隔
|
| 29 |
+
# 构建完整的路径
|
| 30 |
+
video_path = os.path.join(videos_dir, video_file_name) # 完整视频文件路径
|
| 31 |
+
image_path = os.path.join(images_dir, image_file_name) # 完整图像文件路径
|
| 32 |
+
yaml_data["model_video_paths"].append(video_path) # 添加视频文件路径
|
| 33 |
+
yaml_data["cloth_image_paths"].append(image_path) # 添加图像文件路径
|
| 34 |
+
|
| 35 |
+
# 将数据写入 YAML 文件
|
| 36 |
+
with open(output_yaml_path, 'w') as yaml_file:
|
| 37 |
+
yaml.dump(yaml_data, yaml_file, default_flow_style=False)
|
| 38 |
+
|
| 39 |
+
print(f"YAML 文件已生成: {output_yaml_path}")
|
requirements.txt
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate==0.21.0
|
| 2 |
+
av==11.0.0
|
| 3 |
+
clip @ https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip#sha256=b5842c25da441d6c581b53a5c60e0c2127ebafe0f746f8e15561a006c6c3be6a
|
| 4 |
+
decord==0.6.0
|
| 5 |
+
diffusers==0.24.0
|
| 6 |
+
einops==0.4.1
|
| 7 |
+
gradio==3.41.2
|
| 8 |
+
gradio_client==0.5.0
|
| 9 |
+
imageio==2.33.0
|
| 10 |
+
imageio-ffmpeg==0.4.9
|
| 11 |
+
numpy==1.23.5
|
| 12 |
+
omegaconf==2.2.3
|
| 13 |
+
onnxruntime-gpu==1.16.3
|
| 14 |
+
open-clip-torch==2.20.0
|
| 15 |
+
opencv-contrib-python==4.8.1.78
|
| 16 |
+
opencv-python==4.8.1.78
|
| 17 |
+
Pillow==9.5.0
|
| 18 |
+
scikit-image==0.21.0
|
| 19 |
+
scikit-learn==1.3.2
|
| 20 |
+
scipy==1.11.4
|
| 21 |
+
torch==2.0.1
|
| 22 |
+
torchdiffeq==0.2.3
|
| 23 |
+
torchmetrics==1.2.1
|
| 24 |
+
torchsde==0.2.5
|
| 25 |
+
torchvision==0.15.2
|
| 26 |
+
tqdm==4.66.1
|
| 27 |
+
transformers==4.30.2
|
| 28 |
+
mlflow==2.9.2
|
| 29 |
+
xformers==0.0.22
|
scripts.sh
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CUDA_VISIBLE_DEVICES=2 python vivid.py --config /mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/configs/prompts/test_lm_build/cloth_complex_dress.yml
|
| 2 |
+
|
| 3 |
+
CUDA_VISIBLE_DEVICES=2 python vivid.py --config /mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/configs/prompts/test_lm_build/cloth_complex_low.yml
|
| 4 |
+
|
| 5 |
+
CUDA_VISIBLE_DEVICES=2 python vivid.py --config /mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/configs/prompts/test_lm_build/cloth_complex_up.yml
|
| 6 |
+
|
| 7 |
+
CUDA_VISIBLE_DEVICES=2 python vivid.py --config /mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/configs/prompts/test_lm_build/complex_motion.yml
|
stage1_nohup.out
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
train_stage_1.py
ADDED
|
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import logging
|
| 3 |
+
import math
|
| 4 |
+
import os
|
| 5 |
+
import os.path as osp
|
| 6 |
+
import random
|
| 7 |
+
import warnings
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from tempfile import TemporaryDirectory
|
| 11 |
+
|
| 12 |
+
import diffusers
|
| 13 |
+
import mlflow
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
import torch.utils.checkpoint
|
| 19 |
+
import transformers
|
| 20 |
+
from accelerate import Accelerator
|
| 21 |
+
from accelerate.logging import get_logger
|
| 22 |
+
from accelerate.utils import DistributedDataParallelKwargs
|
| 23 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
| 24 |
+
from diffusers.optimization import get_scheduler
|
| 25 |
+
from diffusers.utils import check_min_version
|
| 26 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 27 |
+
from omegaconf import OmegaConf
|
| 28 |
+
from PIL import Image
|
| 29 |
+
from tqdm.auto import tqdm
|
| 30 |
+
from transformers import CLIPVisionModelWithProjection
|
| 31 |
+
|
| 32 |
+
from src.dataset.dance_image import HumanDanceDataset
|
| 33 |
+
# from src.dwpose import DWposeDetector
|
| 34 |
+
from src.models.mutual_self_attention import ReferenceAttentionControl
|
| 35 |
+
from src.models.pose_guider import PoseGuider
|
| 36 |
+
from src.models.unet_2d_condition import UNet2DConditionModel
|
| 37 |
+
from src.models.unet_3d import UNet3DConditionModel
|
| 38 |
+
from src.pipelines.pipeline_pose2img import Pose2ImagePipeline
|
| 39 |
+
from src.utils.util import delete_additional_ckpt, import_filename, seed_everything
|
| 40 |
+
|
| 41 |
+
warnings.filterwarnings("ignore")
|
| 42 |
+
|
| 43 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
| 44 |
+
check_min_version("0.10.0.dev0")
|
| 45 |
+
|
| 46 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class Net(nn.Module):
|
| 50 |
+
def __init__(
|
| 51 |
+
self,
|
| 52 |
+
reference_unet: UNet2DConditionModel,
|
| 53 |
+
denoising_unet: UNet3DConditionModel,
|
| 54 |
+
pose_guider: PoseGuider,
|
| 55 |
+
reference_control_writer,
|
| 56 |
+
reference_control_reader,
|
| 57 |
+
):
|
| 58 |
+
super().__init__()
|
| 59 |
+
self.reference_unet = reference_unet
|
| 60 |
+
self.denoising_unet = denoising_unet
|
| 61 |
+
self.pose_guider = pose_guider
|
| 62 |
+
self.reference_control_writer = reference_control_writer
|
| 63 |
+
self.reference_control_reader = reference_control_reader
|
| 64 |
+
|
| 65 |
+
def forward(
|
| 66 |
+
self,
|
| 67 |
+
noisy_latents,
|
| 68 |
+
timesteps,
|
| 69 |
+
ref_image_latents,
|
| 70 |
+
clip_image_embeds,
|
| 71 |
+
pose_img,
|
| 72 |
+
uncond_fwd: bool = False,
|
| 73 |
+
):
|
| 74 |
+
pose_cond_tensor = pose_img.to(device="cuda")
|
| 75 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
| 76 |
+
|
| 77 |
+
if not uncond_fwd:
|
| 78 |
+
ref_timesteps = torch.zeros_like(timesteps)
|
| 79 |
+
self.reference_unet(
|
| 80 |
+
ref_image_latents,
|
| 81 |
+
ref_timesteps,
|
| 82 |
+
encoder_hidden_states=clip_image_embeds,
|
| 83 |
+
return_dict=False,
|
| 84 |
+
)
|
| 85 |
+
self.reference_control_reader.update(self.reference_control_writer)
|
| 86 |
+
|
| 87 |
+
model_pred = self.denoising_unet(
|
| 88 |
+
noisy_latents,
|
| 89 |
+
timesteps,
|
| 90 |
+
pose_cond_fea=pose_fea,
|
| 91 |
+
encoder_hidden_states=clip_image_embeds,
|
| 92 |
+
).sample
|
| 93 |
+
|
| 94 |
+
return model_pred
|
| 95 |
+
|
| 96 |
+
def log_validation(
|
| 97 |
+
vae,
|
| 98 |
+
image_enc,
|
| 99 |
+
net,
|
| 100 |
+
scheduler,
|
| 101 |
+
accelerator,
|
| 102 |
+
width,
|
| 103 |
+
height,
|
| 104 |
+
save_dir,
|
| 105 |
+
global_step,
|
| 106 |
+
):
|
| 107 |
+
logger.info("Running validation... ")
|
| 108 |
+
|
| 109 |
+
ori_net = accelerator.unwrap_model(net)
|
| 110 |
+
reference_unet = ori_net.reference_unet
|
| 111 |
+
denoising_unet = ori_net.denoising_unet
|
| 112 |
+
pose_guider = ori_net.pose_guider
|
| 113 |
+
|
| 114 |
+
# generator = torch.manual_seed(42)
|
| 115 |
+
generator = torch.Generator().manual_seed(42)
|
| 116 |
+
# cast unet dtype
|
| 117 |
+
vae = vae.to(dtype=torch.float32)
|
| 118 |
+
image_enc = image_enc.to(dtype=torch.float32)
|
| 119 |
+
|
| 120 |
+
# pose_detector = DWposeDetector()
|
| 121 |
+
# pose_detector.to(accelerator.device)
|
| 122 |
+
|
| 123 |
+
pipe = Pose2ImagePipeline(
|
| 124 |
+
vae=vae,
|
| 125 |
+
image_encoder=image_enc,
|
| 126 |
+
reference_unet=reference_unet,
|
| 127 |
+
denoising_unet=denoising_unet,
|
| 128 |
+
pose_guider=pose_guider,
|
| 129 |
+
scheduler=scheduler,
|
| 130 |
+
)
|
| 131 |
+
pipe = pipe.to(accelerator.device)
|
| 132 |
+
video_image_paths=["/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/configs/valid/videos/803137_in_xl.jpg"]
|
| 133 |
+
cloth_paths=["/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/configs/valid/cloth/803128_in_xl.jpg"]
|
| 134 |
+
pil_images = []
|
| 135 |
+
for video_image_path in video_image_paths:
|
| 136 |
+
clip_length=1
|
| 137 |
+
for cloth_image_path in cloth_paths:
|
| 138 |
+
agnostic_path=video_image_path.replace("videos","agnostic_images") #data/videos/upper1.mp4——>data/agnostic/upper1.mp4
|
| 139 |
+
agn_mask_path=video_image_path.replace("videos","agnostic_mask_images")
|
| 140 |
+
densepose_path=video_image_path.replace("videos","densepose_images")
|
| 141 |
+
cloth_mask_path=cloth_image_path.replace("cloth","cloth_mask")
|
| 142 |
+
|
| 143 |
+
video_name = video_image_path.split("/")[-1].replace(".jpg", "")
|
| 144 |
+
cloth_name = cloth_image_path.split("/")[-1].replace(".jpg", "")
|
| 145 |
+
|
| 146 |
+
video_image_pil = Image.open(video_image_path).convert("RGB")
|
| 147 |
+
cloth_image_pil = Image.open(cloth_image_path).convert("RGB")
|
| 148 |
+
cloth_mask_pil = Image.open(cloth_mask_path).convert("RGB")
|
| 149 |
+
agnostic_pil = Image.open(agnostic_path).convert("RGB")
|
| 150 |
+
agn_mask_pil = Image.open(agn_mask_path).convert("RGB")
|
| 151 |
+
densepose_pil = Image.open(densepose_path).convert("RGB")
|
| 152 |
+
|
| 153 |
+
image = pipe(
|
| 154 |
+
agnostic_pil,
|
| 155 |
+
agn_mask_pil,
|
| 156 |
+
cloth_image_pil,
|
| 157 |
+
cloth_mask_pil,
|
| 158 |
+
densepose_pil,
|
| 159 |
+
width,
|
| 160 |
+
height,
|
| 161 |
+
clip_length,
|
| 162 |
+
20,
|
| 163 |
+
3.5,
|
| 164 |
+
generator=generator,
|
| 165 |
+
).images
|
| 166 |
+
image = image[0, :, 0].permute(1, 2, 0).cpu().numpy() # (3, 512, 512)
|
| 167 |
+
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
|
| 168 |
+
# Save ref_image, src_image and the generated_image
|
| 169 |
+
w, h = res_image_pil.size
|
| 170 |
+
canvas = Image.new("RGB", (w * 4, h), "white")
|
| 171 |
+
|
| 172 |
+
cloth_image_pil = cloth_image_pil.resize((w, h))
|
| 173 |
+
video_image_pil = video_image_pil.resize((w, h))
|
| 174 |
+
agnostic_pil = agnostic_pil.resize((w, h))
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
canvas.paste(cloth_image_pil, (0, 0))
|
| 178 |
+
canvas.paste(video_image_pil, (w, 0))
|
| 179 |
+
canvas.paste(agnostic_pil, (w * 2, 0))
|
| 180 |
+
canvas.paste(res_image_pil, (w * 3, 0))
|
| 181 |
+
|
| 182 |
+
out_file = os.path.join(
|
| 183 |
+
save_dir, f"{global_step:06d}-{video_name}_{cloth_name}.jpg"
|
| 184 |
+
)
|
| 185 |
+
canvas.save(out_file)
|
| 186 |
+
|
| 187 |
+
vae = vae.to(dtype=torch.float32)
|
| 188 |
+
image_enc = image_enc.to(dtype=torch.float32)
|
| 189 |
+
|
| 190 |
+
del pipe
|
| 191 |
+
torch.cuda.empty_cache()
|
| 192 |
+
|
| 193 |
+
return pil_images
|
| 194 |
+
|
| 195 |
+
def compute_snr(noise_scheduler, timesteps):
|
| 196 |
+
"""
|
| 197 |
+
Computes SNR as per
|
| 198 |
+
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
| 199 |
+
"""
|
| 200 |
+
alphas_cumprod = noise_scheduler.alphas_cumprod
|
| 201 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
| 202 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
| 203 |
+
|
| 204 |
+
# Expand the tensors.
|
| 205 |
+
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
|
| 206 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[
|
| 207 |
+
timesteps
|
| 208 |
+
].float()
|
| 209 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
| 210 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
| 211 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
| 212 |
+
|
| 213 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
|
| 214 |
+
device=timesteps.device
|
| 215 |
+
)[timesteps].float()
|
| 216 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
| 217 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
|
| 218 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
| 219 |
+
|
| 220 |
+
# Compute SNR.
|
| 221 |
+
snr = (alpha / sigma) ** 2
|
| 222 |
+
return snr
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def main(cfg):
|
| 226 |
+
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
| 227 |
+
accelerator = Accelerator(
|
| 228 |
+
gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps,
|
| 229 |
+
mixed_precision=cfg.solver.mixed_precision,
|
| 230 |
+
log_with="mlflow",
|
| 231 |
+
project_dir="./mlruns",
|
| 232 |
+
kwargs_handlers=[kwargs],
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Make one log on every process with the configuration for debugging.
|
| 236 |
+
logging.basicConfig(
|
| 237 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 238 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 239 |
+
level=logging.INFO,
|
| 240 |
+
)
|
| 241 |
+
logger.info(accelerator.state, main_process_only=False)
|
| 242 |
+
if accelerator.is_local_main_process:
|
| 243 |
+
transformers.utils.logging.set_verbosity_warning()
|
| 244 |
+
diffusers.utils.logging.set_verbosity_info()
|
| 245 |
+
else:
|
| 246 |
+
transformers.utils.logging.set_verbosity_error()
|
| 247 |
+
diffusers.utils.logging.set_verbosity_error()
|
| 248 |
+
|
| 249 |
+
# If passed along, set the training seed now.
|
| 250 |
+
if cfg.seed is not None:
|
| 251 |
+
seed_everything(cfg.seed)
|
| 252 |
+
|
| 253 |
+
exp_name = cfg.exp_name
|
| 254 |
+
save_dir = f"{cfg.output_dir}/{exp_name}"
|
| 255 |
+
if accelerator.is_main_process and not os.path.exists(save_dir):
|
| 256 |
+
os.makedirs(save_dir)
|
| 257 |
+
save_valid_dir = f"{cfg.valid_dir}/{exp_name}"
|
| 258 |
+
if accelerator.is_main_process and not os.path.exists(save_valid_dir):
|
| 259 |
+
os.makedirs(save_valid_dir)
|
| 260 |
+
validation_dir = save_valid_dir
|
| 261 |
+
if cfg.weight_dtype == "fp16":
|
| 262 |
+
weight_dtype = torch.float16
|
| 263 |
+
elif cfg.weight_dtype == "bf16":
|
| 264 |
+
weight_dtype = torch.bfloat16
|
| 265 |
+
elif cfg.weight_dtype == "fp32":
|
| 266 |
+
weight_dtype = torch.float32
|
| 267 |
+
else:
|
| 268 |
+
raise ValueError(
|
| 269 |
+
f"Do not support weight dtype: {cfg.weight_dtype} during training"
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs)
|
| 273 |
+
if cfg.enable_zero_snr:
|
| 274 |
+
sched_kwargs.update(
|
| 275 |
+
rescale_betas_zero_snr=True,
|
| 276 |
+
timestep_spacing="trailing",
|
| 277 |
+
prediction_type="v_prediction",
|
| 278 |
+
)
|
| 279 |
+
val_noise_scheduler = DDIMScheduler(**sched_kwargs)
|
| 280 |
+
sched_kwargs.update({"beta_schedule": "scaled_linear"})
|
| 281 |
+
train_noise_scheduler = DDIMScheduler(**sched_kwargs)
|
| 282 |
+
vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to(
|
| 283 |
+
"cuda", dtype=weight_dtype
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
reference_unet = UNet2DConditionModel.from_pretrained_2d(
|
| 287 |
+
config.base_model_path,
|
| 288 |
+
subfolder="unet",
|
| 289 |
+
unet_additional_kwargs={
|
| 290 |
+
"in_channels": 5,
|
| 291 |
+
}
|
| 292 |
+
).to(dtype=weight_dtype, device="cuda")
|
| 293 |
+
|
| 294 |
+
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
| 295 |
+
cfg.base_model_path,
|
| 296 |
+
"",
|
| 297 |
+
subfolder="unet",
|
| 298 |
+
unet_additional_kwargs={
|
| 299 |
+
"in_channels": 9,
|
| 300 |
+
"use_motion_module": False,
|
| 301 |
+
"unet_use_temporal_attention": False,
|
| 302 |
+
},
|
| 303 |
+
).to(device="cuda")
|
| 304 |
+
|
| 305 |
+
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
| 306 |
+
cfg.image_encoder_path,
|
| 307 |
+
).to(dtype=weight_dtype, device="cuda")
|
| 308 |
+
|
| 309 |
+
if cfg.pose_guider_path:
|
| 310 |
+
pose_guider = PoseGuider(
|
| 311 |
+
conditioning_embedding_channels=320, block_out_channels=(16, 32, 96, 256)
|
| 312 |
+
).to(device="cuda")
|
| 313 |
+
# load pretrained controlnet-openpose params for pose_guider
|
| 314 |
+
controlnet_openpose_state_dict = torch.load(cfg.controlnet_openpose_path)
|
| 315 |
+
state_dict_to_load = {}
|
| 316 |
+
for k in controlnet_openpose_state_dict.keys():
|
| 317 |
+
if k.startswith("controlnet_cond_embedding.") and k.find("conv_out") < 0:
|
| 318 |
+
new_k = k.replace("controlnet_cond_embedding.", "")
|
| 319 |
+
state_dict_to_load[new_k] = controlnet_openpose_state_dict[k]
|
| 320 |
+
miss, _ = pose_guider.load_state_dict(state_dict_to_load, strict=False)
|
| 321 |
+
logger.info(f"Missing key for pose guider: {len(miss)}")
|
| 322 |
+
else:
|
| 323 |
+
pose_guider = PoseGuider(
|
| 324 |
+
conditioning_embedding_channels=320,
|
| 325 |
+
).to(device="cuda")
|
| 326 |
+
|
| 327 |
+
# load pretrained weights
|
| 328 |
+
denoising_unet.load_state_dict(
|
| 329 |
+
torch.load(config.denoising_unet_path, map_location="cpu"),
|
| 330 |
+
strict=True,
|
| 331 |
+
)
|
| 332 |
+
reference_unet.load_state_dict(
|
| 333 |
+
torch.load(config.reference_unet_path, map_location="cpu"),
|
| 334 |
+
strict=True,
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
pose_guider.load_state_dict(
|
| 338 |
+
torch.load(config.pose_guider_path, map_location="cpu"),
|
| 339 |
+
strict=True,
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
# Freeze
|
| 344 |
+
vae.requires_grad_(False)
|
| 345 |
+
image_enc.requires_grad_(False)
|
| 346 |
+
|
| 347 |
+
# Explictly declare training models
|
| 348 |
+
denoising_unet.requires_grad_(True)
|
| 349 |
+
# Some top layer parames of reference_unet don't need grad
|
| 350 |
+
for name, param in reference_unet.named_parameters():
|
| 351 |
+
if "up_blocks.3" in name:
|
| 352 |
+
param.requires_grad_(False)
|
| 353 |
+
else:
|
| 354 |
+
param.requires_grad_(True)
|
| 355 |
+
|
| 356 |
+
pose_guider.requires_grad_(True)
|
| 357 |
+
|
| 358 |
+
reference_control_writer = ReferenceAttentionControl(
|
| 359 |
+
reference_unet,
|
| 360 |
+
do_classifier_free_guidance=False,
|
| 361 |
+
mode="write",
|
| 362 |
+
fusion_blocks="full",
|
| 363 |
+
)
|
| 364 |
+
reference_control_reader = ReferenceAttentionControl(
|
| 365 |
+
denoising_unet,
|
| 366 |
+
do_classifier_free_guidance=False,
|
| 367 |
+
mode="read",
|
| 368 |
+
fusion_blocks="full",
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
net = Net(
|
| 372 |
+
reference_unet,
|
| 373 |
+
denoising_unet,
|
| 374 |
+
pose_guider,
|
| 375 |
+
reference_control_writer,
|
| 376 |
+
reference_control_reader,
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
if cfg.solver.enable_xformers_memory_efficient_attention:
|
| 380 |
+
if is_xformers_available():
|
| 381 |
+
reference_unet.enable_xformers_memory_efficient_attention()
|
| 382 |
+
denoising_unet.enable_xformers_memory_efficient_attention()
|
| 383 |
+
else:
|
| 384 |
+
raise ValueError(
|
| 385 |
+
"xformers is not available. Make sure it is installed correctly"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
if cfg.solver.gradient_checkpointing:
|
| 389 |
+
reference_unet.enable_gradient_checkpointing()
|
| 390 |
+
denoising_unet.enable_gradient_checkpointing()
|
| 391 |
+
|
| 392 |
+
if cfg.solver.scale_lr:
|
| 393 |
+
learning_rate = (
|
| 394 |
+
cfg.solver.learning_rate
|
| 395 |
+
* cfg.solver.gradient_accumulation_steps
|
| 396 |
+
* cfg.data.train_bs
|
| 397 |
+
* accelerator.num_processes
|
| 398 |
+
)
|
| 399 |
+
else:
|
| 400 |
+
learning_rate = cfg.solver.learning_rate
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
optimizer_cls = torch.optim.AdamW
|
| 404 |
+
|
| 405 |
+
trainable_params = list(filter(lambda p: p.requires_grad, net.parameters()))
|
| 406 |
+
optimizer = optimizer_cls(
|
| 407 |
+
trainable_params,
|
| 408 |
+
lr=learning_rate,
|
| 409 |
+
betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
|
| 410 |
+
weight_decay=cfg.solver.adam_weight_decay,
|
| 411 |
+
eps=cfg.solver.adam_epsilon,
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
# Scheduler
|
| 415 |
+
lr_scheduler = get_scheduler(
|
| 416 |
+
cfg.solver.lr_scheduler,
|
| 417 |
+
optimizer=optimizer,
|
| 418 |
+
num_warmup_steps=cfg.solver.lr_warmup_steps
|
| 419 |
+
* cfg.solver.gradient_accumulation_steps,
|
| 420 |
+
num_training_steps=cfg.solver.max_train_steps
|
| 421 |
+
* cfg.solver.gradient_accumulation_steps,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
train_dataset = HumanDanceDataset(
|
| 425 |
+
img_size=(cfg.data.train_width, cfg.data.train_height),
|
| 426 |
+
img_scale=(0.9, 1.0),
|
| 427 |
+
data_meta_paths=cfg.data.meta_paths,
|
| 428 |
+
sample_margin=cfg.data.sample_margin,
|
| 429 |
+
)
|
| 430 |
+
train_dataloader = torch.utils.data.DataLoader(
|
| 431 |
+
train_dataset, batch_size=cfg.data.train_bs, shuffle=True, num_workers=4
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
# Prepare everything with our `accelerator`.
|
| 435 |
+
(
|
| 436 |
+
net,
|
| 437 |
+
optimizer,
|
| 438 |
+
train_dataloader,
|
| 439 |
+
lr_scheduler,
|
| 440 |
+
) = accelerator.prepare(
|
| 441 |
+
net,
|
| 442 |
+
optimizer,
|
| 443 |
+
train_dataloader,
|
| 444 |
+
lr_scheduler,
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
| 448 |
+
num_update_steps_per_epoch = math.ceil(
|
| 449 |
+
len(train_dataloader) / cfg.solver.gradient_accumulation_steps
|
| 450 |
+
)
|
| 451 |
+
# Afterwards we recalculate our number of training epochs
|
| 452 |
+
num_train_epochs = math.ceil(
|
| 453 |
+
cfg.solver.max_train_steps / num_update_steps_per_epoch
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
| 457 |
+
# The trackers initializes automatically on the main process.
|
| 458 |
+
if accelerator.is_main_process:
|
| 459 |
+
run_time = datetime.now().strftime("%Y%m%d-%H%M")
|
| 460 |
+
accelerator.init_trackers(
|
| 461 |
+
cfg.exp_name,
|
| 462 |
+
init_kwargs={"mlflow": {"run_name": run_time}},
|
| 463 |
+
)
|
| 464 |
+
# dump config file
|
| 465 |
+
mlflow.log_dict(OmegaConf.to_container(cfg), "config.yaml")
|
| 466 |
+
|
| 467 |
+
# Train!
|
| 468 |
+
total_batch_size = (
|
| 469 |
+
cfg.data.train_bs
|
| 470 |
+
* accelerator.num_processes
|
| 471 |
+
* cfg.solver.gradient_accumulation_steps
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
logger.info("***** Running training *****")
|
| 475 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
| 476 |
+
logger.info(f" Num Epochs = {num_train_epochs}")
|
| 477 |
+
logger.info(f" Instantaneous batch size per device = {cfg.data.train_bs}")
|
| 478 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
| 479 |
+
logger.info(f" Gradient Accumulation steps = {cfg.solver.gradient_accumulation_steps}")
|
| 480 |
+
logger.info(f" Total optimization steps = {cfg.solver.max_train_steps}")
|
| 481 |
+
global_step = 0
|
| 482 |
+
first_epoch = 0
|
| 483 |
+
|
| 484 |
+
# Potentially load in the weights and states from a previous save
|
| 485 |
+
if cfg.resume_from_checkpoint:
|
| 486 |
+
if cfg.resume_from_checkpoint != "latest":
|
| 487 |
+
resume_dir = cfg.resume_from_checkpoint
|
| 488 |
+
else:
|
| 489 |
+
resume_dir = save_dir
|
| 490 |
+
# Get the most recent checkpoint
|
| 491 |
+
dirs = os.listdir(resume_dir)
|
| 492 |
+
print( dirs)
|
| 493 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
| 494 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
| 495 |
+
path = dirs[-1]
|
| 496 |
+
accelerator.load_state(os.path.join(resume_dir, path))
|
| 497 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
| 498 |
+
global_step = int(path.split("-")[1])
|
| 499 |
+
|
| 500 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
| 501 |
+
resume_step = global_step % num_update_steps_per_epoch
|
| 502 |
+
|
| 503 |
+
# Only show the progress bar once on each machine.
|
| 504 |
+
progress_bar = tqdm(
|
| 505 |
+
range(global_step, cfg.solver.max_train_steps),
|
| 506 |
+
disable=not accelerator.is_local_main_process,
|
| 507 |
+
)
|
| 508 |
+
progress_bar.set_description("Steps")
|
| 509 |
+
|
| 510 |
+
for epoch in range(first_epoch, num_train_epochs):
|
| 511 |
+
train_loss = 0.0
|
| 512 |
+
for step, batch in enumerate(train_dataloader):
|
| 513 |
+
# print(batch.keys())
|
| 514 |
+
with accelerator.accumulate(net):
|
| 515 |
+
# Convert videos to latent space
|
| 516 |
+
pixel_values = batch["tgt_img"].to(weight_dtype)
|
| 517 |
+
masked_pixel_values = batch["agnostic_img"].to(weight_dtype)
|
| 518 |
+
mask_of_pixel_values = batch["agnostic_mask_img"].to(weight_dtype)[:,0:1,:,:]
|
| 519 |
+
with torch.no_grad():
|
| 520 |
+
# print(pixel_values.dtype)
|
| 521 |
+
latents = vae.encode(pixel_values).latent_dist.sample()
|
| 522 |
+
latents = latents.unsqueeze(2) # (b, c, 1, h, w)
|
| 523 |
+
latents = latents * 0.18215
|
| 524 |
+
|
| 525 |
+
masked_latents = vae.encode(masked_pixel_values).latent_dist.sample().unsqueeze(2) * 0.18215
|
| 526 |
+
mask_of_latents = torch.nn.functional.interpolate(mask_of_pixel_values.unsqueeze(2), size=(1,mask_of_pixel_values.shape[-2] // 8, mask_of_pixel_values.shape[-1] // 8))
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
noise = torch.randn_like(latents)
|
| 530 |
+
if cfg.noise_offset > 0.0:
|
| 531 |
+
noise += cfg.noise_offset * torch.randn(
|
| 532 |
+
(noise.shape[0], noise.shape[1], 1, 1, 1),
|
| 533 |
+
device=noise.device,
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
bsz = latents.shape[0]
|
| 537 |
+
# Sample a random timestep for each video
|
| 538 |
+
timesteps = torch.randint(
|
| 539 |
+
0,
|
| 540 |
+
train_noise_scheduler.num_train_timesteps,
|
| 541 |
+
(bsz,),
|
| 542 |
+
device=latents.device,
|
| 543 |
+
)
|
| 544 |
+
timesteps = timesteps.long()
|
| 545 |
+
|
| 546 |
+
tgt_pose_img = batch["tgt_pose"]
|
| 547 |
+
tgt_pose_img = tgt_pose_img.unsqueeze(2) # (bs, 3, 1, 512, 512)
|
| 548 |
+
|
| 549 |
+
uncond_fwd = random.random() < cfg.uncond_ratio
|
| 550 |
+
clip_image_list = []
|
| 551 |
+
ref_image_list = []
|
| 552 |
+
cloth_mask_list = []
|
| 553 |
+
for batch_idx, (ref_img, cloth_mask, clip_img) in enumerate(
|
| 554 |
+
zip(
|
| 555 |
+
batch["cloth_img"],
|
| 556 |
+
batch["cloth_mask"],
|
| 557 |
+
batch["clip_images"],
|
| 558 |
+
)
|
| 559 |
+
):
|
| 560 |
+
if uncond_fwd:
|
| 561 |
+
clip_image_list.append(torch.zeros_like(clip_img))
|
| 562 |
+
else:
|
| 563 |
+
clip_image_list.append(clip_img)
|
| 564 |
+
ref_image_list.append(ref_img)
|
| 565 |
+
cloth_mask_list.append(cloth_mask)
|
| 566 |
+
|
| 567 |
+
with torch.no_grad():
|
| 568 |
+
ref_img = torch.stack(ref_image_list, dim=0).to(
|
| 569 |
+
dtype=vae.dtype, device=vae.device
|
| 570 |
+
)
|
| 571 |
+
ref_image_latents = vae.encode(
|
| 572 |
+
ref_img
|
| 573 |
+
).latent_dist.sample() # (bs, d, 64, 64)
|
| 574 |
+
ref_image_latents = ref_image_latents * 0.18215
|
| 575 |
+
|
| 576 |
+
cloth_mask = torch.stack(cloth_mask_list, dim=0).to(
|
| 577 |
+
dtype=vae.dtype, device=vae.device
|
| 578 |
+
)
|
| 579 |
+
cloth_mask = cloth_mask[:,0:1,:,:]
|
| 580 |
+
cloth_mask = torch.nn.functional.interpolate(cloth_mask, size=(cloth_mask.shape[-2] // 8, cloth_mask.shape[-1] // 8))
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
clip_img = torch.stack(clip_image_list, dim=0).to(
|
| 584 |
+
dtype=image_enc.dtype, device=image_enc.device
|
| 585 |
+
)
|
| 586 |
+
clip_image_embeds = image_enc(
|
| 587 |
+
clip_img.to("cuda", dtype=weight_dtype)
|
| 588 |
+
).image_embeds
|
| 589 |
+
image_prompt_embeds = clip_image_embeds.unsqueeze(1) # (bs, 1, d)
|
| 590 |
+
|
| 591 |
+
# add noise
|
| 592 |
+
noisy_latents = train_noise_scheduler.add_noise(
|
| 593 |
+
latents, noise, timesteps
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
# Get the target for loss depending on the prediction type
|
| 597 |
+
if train_noise_scheduler.prediction_type == "epsilon":
|
| 598 |
+
target = noise
|
| 599 |
+
elif train_noise_scheduler.prediction_type == "v_prediction":
|
| 600 |
+
target = train_noise_scheduler.get_velocity(
|
| 601 |
+
latents, noise, timesteps
|
| 602 |
+
)
|
| 603 |
+
else:
|
| 604 |
+
raise ValueError(
|
| 605 |
+
f"Unknown prediction type {train_noise_scheduler.prediction_type}"
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
model_pred = net(
|
| 609 |
+
# noisy_latents,
|
| 610 |
+
torch.cat([noisy_latents,masked_latents,mask_of_latents],dim=1),
|
| 611 |
+
timesteps,
|
| 612 |
+
torch.cat([ref_image_latents, cloth_mask],dim=1),
|
| 613 |
+
image_prompt_embeds,
|
| 614 |
+
tgt_pose_img,
|
| 615 |
+
uncond_fwd,
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
if cfg.snr_gamma == 0:
|
| 619 |
+
loss = F.mse_loss(
|
| 620 |
+
model_pred.float(), target.float(), reduction="mean"
|
| 621 |
+
)
|
| 622 |
+
else:
|
| 623 |
+
snr = compute_snr(train_noise_scheduler, timesteps)
|
| 624 |
+
if train_noise_scheduler.config.prediction_type == "v_prediction":
|
| 625 |
+
# Velocity objective requires that we add one to SNR values before we divide by them.
|
| 626 |
+
snr = snr + 1
|
| 627 |
+
mse_loss_weights = (
|
| 628 |
+
torch.stack(
|
| 629 |
+
[snr, cfg.snr_gamma * torch.ones_like(timesteps)], dim=1
|
| 630 |
+
).min(dim=1)[0]
|
| 631 |
+
/ snr
|
| 632 |
+
)
|
| 633 |
+
loss = F.mse_loss(
|
| 634 |
+
model_pred.float(), target.float(), reduction="none"
|
| 635 |
+
)
|
| 636 |
+
loss = (
|
| 637 |
+
loss.mean(dim=list(range(1, len(loss.shape))))
|
| 638 |
+
* mse_loss_weights
|
| 639 |
+
)
|
| 640 |
+
loss = loss.mean()
|
| 641 |
+
|
| 642 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
| 643 |
+
avg_loss = accelerator.gather(loss.repeat(cfg.data.train_bs)).mean()
|
| 644 |
+
train_loss += avg_loss.item() / cfg.solver.gradient_accumulation_steps
|
| 645 |
+
|
| 646 |
+
# Backpropagate
|
| 647 |
+
accelerator.backward(loss)
|
| 648 |
+
if accelerator.sync_gradients:
|
| 649 |
+
accelerator.clip_grad_norm_(
|
| 650 |
+
trainable_params,
|
| 651 |
+
cfg.solver.max_grad_norm,
|
| 652 |
+
)
|
| 653 |
+
optimizer.step()
|
| 654 |
+
lr_scheduler.step()
|
| 655 |
+
optimizer.zero_grad()
|
| 656 |
+
|
| 657 |
+
if accelerator.sync_gradients:
|
| 658 |
+
reference_control_reader.clear()
|
| 659 |
+
reference_control_writer.clear()
|
| 660 |
+
progress_bar.update(1)
|
| 661 |
+
global_step += 1
|
| 662 |
+
accelerator.log({"train_loss": train_loss}, step=global_step)
|
| 663 |
+
train_loss = 0.0
|
| 664 |
+
|
| 665 |
+
if global_step % cfg.checkpointing_steps == 0:
|
| 666 |
+
if accelerator.is_main_process:
|
| 667 |
+
save_path = os.path.join(save_dir, f"checkpoint-{global_step}")
|
| 668 |
+
delete_additional_ckpt(save_dir, 1)
|
| 669 |
+
accelerator.save_state(save_path)
|
| 670 |
+
|
| 671 |
+
if global_step % cfg.val.validation_steps == 0:
|
| 672 |
+
if accelerator.is_main_process:
|
| 673 |
+
generator = torch.Generator(device=accelerator.device)
|
| 674 |
+
generator.manual_seed(cfg.seed)
|
| 675 |
+
|
| 676 |
+
log_validation(
|
| 677 |
+
vae=vae,
|
| 678 |
+
image_enc=image_enc,
|
| 679 |
+
net=net,
|
| 680 |
+
scheduler=val_noise_scheduler,
|
| 681 |
+
accelerator=accelerator,
|
| 682 |
+
width=cfg.data.train_width,
|
| 683 |
+
height=cfg.data.train_height,
|
| 684 |
+
save_dir=validation_dir,
|
| 685 |
+
global_step=global_step,
|
| 686 |
+
)
|
| 687 |
+
|
| 688 |
+
# for sample_id, sample_dict in enumerate(sample_dicts):
|
| 689 |
+
# sample_name = sample_dict["name"]
|
| 690 |
+
# img = sample_dict["img"]
|
| 691 |
+
# with TemporaryDirectory() as temp_dir:
|
| 692 |
+
# out_file = Path(
|
| 693 |
+
# f"{temp_dir}/{global_step:06d}-{sample_name}.gif"
|
| 694 |
+
# )
|
| 695 |
+
# img.save(out_file)
|
| 696 |
+
# mlflow.log_artifact(out_file)
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
logs = {
|
| 700 |
+
"step_loss": loss.detach().item(),
|
| 701 |
+
"lr": lr_scheduler.get_last_lr()[0],
|
| 702 |
+
}
|
| 703 |
+
progress_bar.set_postfix(**logs)
|
| 704 |
+
|
| 705 |
+
if global_step >= cfg.solver.max_train_steps:
|
| 706 |
+
break
|
| 707 |
+
|
| 708 |
+
# save model after each epoch
|
| 709 |
+
if (
|
| 710 |
+
epoch + 1
|
| 711 |
+
) % cfg.save_model_epoch_interval == 0 and accelerator.is_main_process:
|
| 712 |
+
unwrap_net = accelerator.unwrap_model(net)
|
| 713 |
+
save_checkpoint(
|
| 714 |
+
unwrap_net.reference_unet,
|
| 715 |
+
save_dir,
|
| 716 |
+
"reference_unet",
|
| 717 |
+
global_step,
|
| 718 |
+
total_limit=3,
|
| 719 |
+
)
|
| 720 |
+
save_checkpoint(
|
| 721 |
+
unwrap_net.denoising_unet,
|
| 722 |
+
save_dir,
|
| 723 |
+
"denoising_unet",
|
| 724 |
+
global_step,
|
| 725 |
+
total_limit=3,
|
| 726 |
+
)
|
| 727 |
+
save_checkpoint(
|
| 728 |
+
unwrap_net.pose_guider,
|
| 729 |
+
save_dir,
|
| 730 |
+
"pose_guider",
|
| 731 |
+
global_step,
|
| 732 |
+
total_limit=3,
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
# Create the pipeline using the trained modules and save it.
|
| 736 |
+
accelerator.wait_for_everyone()
|
| 737 |
+
accelerator.end_training()
|
| 738 |
+
|
| 739 |
+
|
| 740 |
+
def save_checkpoint(model, save_dir, prefix, ckpt_num, total_limit=None):
|
| 741 |
+
save_path = osp.join(save_dir, f"{prefix}-{ckpt_num}.pth")
|
| 742 |
+
|
| 743 |
+
if total_limit is not None:
|
| 744 |
+
checkpoints = os.listdir(save_dir)
|
| 745 |
+
checkpoints = [d for d in checkpoints if d.startswith(prefix)]
|
| 746 |
+
checkpoints = sorted(
|
| 747 |
+
checkpoints, key=lambda x: int(x.split("-")[1].split(".")[0])
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
if len(checkpoints) >= total_limit:
|
| 751 |
+
num_to_remove = len(checkpoints) - total_limit + 1
|
| 752 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
| 753 |
+
logger.info(
|
| 754 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
| 755 |
+
)
|
| 756 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
| 757 |
+
|
| 758 |
+
for removing_checkpoint in removing_checkpoints:
|
| 759 |
+
removing_checkpoint = os.path.join(save_dir, removing_checkpoint)
|
| 760 |
+
os.remove(removing_checkpoint)
|
| 761 |
+
|
| 762 |
+
state_dict = model.state_dict()
|
| 763 |
+
torch.save(state_dict, save_path)
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
if __name__ == "__main__":
|
| 767 |
+
parser = argparse.ArgumentParser()
|
| 768 |
+
parser.add_argument("--config", type=str, default="./configs/training/stage1.yaml")
|
| 769 |
+
args = parser.parse_args()
|
| 770 |
+
|
| 771 |
+
if args.config[-5:] == ".yaml":
|
| 772 |
+
config = OmegaConf.load(args.config)
|
| 773 |
+
elif args.config[-3:] == ".py":
|
| 774 |
+
config = import_filename(args.config).cfg
|
| 775 |
+
else:
|
| 776 |
+
raise ValueError("Do not support this format config file")
|
| 777 |
+
main(config)
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
# accelerate launch train_stage_1.py --config configs/train/stage1.yaml
|
| 781 |
+
# accelerate launch train_stage_2.py --config configs/train/stage2.yaml
|
train_stage_2.py
ADDED
|
@@ -0,0 +1,842 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import copy
|
| 3 |
+
import logging
|
| 4 |
+
import math
|
| 5 |
+
import os
|
| 6 |
+
import os.path as osp
|
| 7 |
+
import random
|
| 8 |
+
import time
|
| 9 |
+
import warnings
|
| 10 |
+
from collections import OrderedDict
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from tempfile import TemporaryDirectory
|
| 14 |
+
from src.utils.util import get_fps, read_frames, save_videos_grid
|
| 15 |
+
|
| 16 |
+
import diffusers
|
| 17 |
+
import mlflow
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
import torch.utils.checkpoint
|
| 22 |
+
import transformers
|
| 23 |
+
from accelerate import Accelerator
|
| 24 |
+
from accelerate.logging import get_logger
|
| 25 |
+
from accelerate.utils import DistributedDataParallelKwargs
|
| 26 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
| 27 |
+
from diffusers.optimization import get_scheduler
|
| 28 |
+
from diffusers.utils import check_min_version
|
| 29 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 30 |
+
from einops import rearrange
|
| 31 |
+
from omegaconf import OmegaConf
|
| 32 |
+
from PIL import Image
|
| 33 |
+
from torchvision import transforms
|
| 34 |
+
from tqdm.auto import tqdm
|
| 35 |
+
from transformers import CLIPVisionModelWithProjection
|
| 36 |
+
|
| 37 |
+
from src.dataset.dance_video import HumanDanceVideoDataset
|
| 38 |
+
from src.models.mutual_self_attention import ReferenceAttentionControl
|
| 39 |
+
from src.models.pose_guider import PoseGuider
|
| 40 |
+
from src.models.unet_2d_condition import UNet2DConditionModel
|
| 41 |
+
from src.models.unet_3d import UNet3DConditionModel
|
| 42 |
+
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
| 43 |
+
from src.utils.util import (
|
| 44 |
+
delete_additional_ckpt,
|
| 45 |
+
import_filename,
|
| 46 |
+
read_frames,
|
| 47 |
+
save_videos_grid,
|
| 48 |
+
seed_everything,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
warnings.filterwarnings("ignore")
|
| 52 |
+
|
| 53 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
| 54 |
+
check_min_version("0.10.0.dev0")
|
| 55 |
+
|
| 56 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class Net(nn.Module):
|
| 60 |
+
def __init__(
|
| 61 |
+
self,
|
| 62 |
+
reference_unet: UNet2DConditionModel,
|
| 63 |
+
denoising_unet: UNet3DConditionModel,
|
| 64 |
+
pose_guider: PoseGuider,
|
| 65 |
+
reference_control_writer,
|
| 66 |
+
reference_control_reader,
|
| 67 |
+
):
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.reference_unet = reference_unet
|
| 70 |
+
self.denoising_unet = denoising_unet
|
| 71 |
+
self.pose_guider = pose_guider
|
| 72 |
+
self.reference_control_writer = reference_control_writer
|
| 73 |
+
self.reference_control_reader = reference_control_reader
|
| 74 |
+
|
| 75 |
+
def forward(
|
| 76 |
+
self,
|
| 77 |
+
noisy_latents,
|
| 78 |
+
timesteps,
|
| 79 |
+
ref_image_latents,
|
| 80 |
+
clip_image_embeds,
|
| 81 |
+
pose_img,
|
| 82 |
+
uncond_fwd: bool = False,
|
| 83 |
+
):
|
| 84 |
+
pose_cond_tensor = pose_img.to(device="cuda")
|
| 85 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
| 86 |
+
|
| 87 |
+
if not uncond_fwd:
|
| 88 |
+
ref_timesteps = torch.zeros_like(timesteps)
|
| 89 |
+
self.reference_unet(
|
| 90 |
+
ref_image_latents,
|
| 91 |
+
ref_timesteps,
|
| 92 |
+
encoder_hidden_states=clip_image_embeds,
|
| 93 |
+
return_dict=False,
|
| 94 |
+
)
|
| 95 |
+
self.reference_control_reader.update(self.reference_control_writer)
|
| 96 |
+
|
| 97 |
+
model_pred = self.denoising_unet(
|
| 98 |
+
noisy_latents,
|
| 99 |
+
timesteps,
|
| 100 |
+
pose_cond_fea=pose_fea,
|
| 101 |
+
encoder_hidden_states=clip_image_embeds,
|
| 102 |
+
).sample
|
| 103 |
+
|
| 104 |
+
return model_pred
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def compute_snr(noise_scheduler, timesteps):
|
| 108 |
+
"""
|
| 109 |
+
Computes SNR as per
|
| 110 |
+
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
| 111 |
+
"""
|
| 112 |
+
alphas_cumprod = noise_scheduler.alphas_cumprod
|
| 113 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
| 114 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
| 115 |
+
|
| 116 |
+
# Expand the tensors.
|
| 117 |
+
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
|
| 118 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[
|
| 119 |
+
timesteps
|
| 120 |
+
].float()
|
| 121 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
| 122 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
| 123 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
| 124 |
+
|
| 125 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
|
| 126 |
+
device=timesteps.device
|
| 127 |
+
)[timesteps].float()
|
| 128 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
| 129 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
|
| 130 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
| 131 |
+
|
| 132 |
+
# Compute SNR.
|
| 133 |
+
snr = (alpha / sigma) ** 2
|
| 134 |
+
return snr
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def log_validation(
|
| 138 |
+
vae,
|
| 139 |
+
image_enc,
|
| 140 |
+
net,
|
| 141 |
+
scheduler,
|
| 142 |
+
accelerator,
|
| 143 |
+
width,
|
| 144 |
+
height,
|
| 145 |
+
global_step,
|
| 146 |
+
clip_length=24,
|
| 147 |
+
generator=None,
|
| 148 |
+
|
| 149 |
+
):
|
| 150 |
+
logger.info("Running validation... ")
|
| 151 |
+
|
| 152 |
+
ori_net = accelerator.unwrap_model(net)
|
| 153 |
+
reference_unet = ori_net.reference_unet
|
| 154 |
+
denoising_unet = ori_net.denoising_unet
|
| 155 |
+
pose_guider = ori_net.pose_guider
|
| 156 |
+
|
| 157 |
+
if generator is None:
|
| 158 |
+
generator = torch.manual_seed(42)
|
| 159 |
+
tmp_denoising_unet = copy.deepcopy(denoising_unet)
|
| 160 |
+
tmp_denoising_unet = tmp_denoising_unet.to(dtype=torch.float16)
|
| 161 |
+
|
| 162 |
+
pipe = Pose2VideoPipeline(
|
| 163 |
+
vae=vae,
|
| 164 |
+
image_encoder=image_enc,
|
| 165 |
+
reference_unet=reference_unet,
|
| 166 |
+
denoising_unet=tmp_denoising_unet,
|
| 167 |
+
pose_guider=pose_guider,
|
| 168 |
+
scheduler=scheduler,
|
| 169 |
+
)
|
| 170 |
+
pipe = pipe.to(accelerator.device)
|
| 171 |
+
date_str = datetime.now().strftime("%Y%m%d")
|
| 172 |
+
time_str = datetime.now().strftime("%H%M")
|
| 173 |
+
save_dir_name = f"{time_str}"
|
| 174 |
+
save_dir = Path(f"vividfuxian_motion/{date_str}/{save_dir_name}")
|
| 175 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
| 176 |
+
|
| 177 |
+
model_video_paths = ["/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/dataset/ViViD/dresses/videos/803128_detail.mp4"]
|
| 178 |
+
cloth_image_paths=["/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/dataset/ViViD/dresses/images/1060638_in_xl.jpg"]
|
| 179 |
+
transform = transforms.Compose(
|
| 180 |
+
[transforms.Resize((height, width)), transforms.ToTensor()]
|
| 181 |
+
)
|
| 182 |
+
for model_image_path in model_video_paths:
|
| 183 |
+
src_fps = get_fps(model_image_path)
|
| 184 |
+
|
| 185 |
+
model_name = Path(model_image_path).stem
|
| 186 |
+
agnostic_path=model_image_path.replace("videos","agnostic")
|
| 187 |
+
agn_mask_path=model_image_path.replace("videos","agnostic_mask")
|
| 188 |
+
densepose_path=model_image_path.replace("videos","densepose")
|
| 189 |
+
|
| 190 |
+
video_tensor_list=[]
|
| 191 |
+
video_images=read_frames(model_image_path)
|
| 192 |
+
|
| 193 |
+
for vid_image_pil in video_images[:clip_length]:
|
| 194 |
+
video_tensor_list.append(transform(vid_image_pil))
|
| 195 |
+
|
| 196 |
+
video_tensor = torch.stack(video_tensor_list, dim=0) # (f, c, h, w)
|
| 197 |
+
video_tensor = video_tensor.transpose(0, 1)
|
| 198 |
+
|
| 199 |
+
agnostic_list=[]
|
| 200 |
+
agnostic_images=read_frames(agnostic_path)
|
| 201 |
+
for agnostic_image_pil in agnostic_images[:clip_length]:
|
| 202 |
+
agnostic_list.append(agnostic_image_pil)
|
| 203 |
+
|
| 204 |
+
agn_mask_list=[]
|
| 205 |
+
agn_mask_images=read_frames(agn_mask_path)
|
| 206 |
+
for agn_mask_image_pil in agn_mask_images[:clip_length]:
|
| 207 |
+
agn_mask_list.append(agn_mask_image_pil)
|
| 208 |
+
|
| 209 |
+
pose_list=[]
|
| 210 |
+
pose_images=read_frames(densepose_path)
|
| 211 |
+
for pose_image_pil in pose_images[:clip_length]:
|
| 212 |
+
pose_list.append(pose_image_pil)
|
| 213 |
+
|
| 214 |
+
video_tensor = video_tensor.unsqueeze(0)
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
for cloth_image_path in cloth_image_paths:
|
| 218 |
+
cloth_name = Path(cloth_image_path).stem
|
| 219 |
+
cloth_image_pil = Image.open(cloth_image_path).convert("RGB")
|
| 220 |
+
|
| 221 |
+
cloth_mask_path=cloth_image_path.replace("cloth","cloth_mask")
|
| 222 |
+
cloth_mask_pil = Image.open(cloth_mask_path).convert("RGB")
|
| 223 |
+
|
| 224 |
+
pipeline_output = pipe(
|
| 225 |
+
agnostic_list,
|
| 226 |
+
agn_mask_list,
|
| 227 |
+
cloth_image_pil,
|
| 228 |
+
cloth_mask_pil,
|
| 229 |
+
pose_list,
|
| 230 |
+
width,
|
| 231 |
+
height,
|
| 232 |
+
clip_length,
|
| 233 |
+
20,
|
| 234 |
+
3.5,
|
| 235 |
+
generator=generator,
|
| 236 |
+
)
|
| 237 |
+
video = pipeline_output.videos
|
| 238 |
+
|
| 239 |
+
video = torch.cat([video_tensor,video], dim=0)
|
| 240 |
+
save_videos_grid(
|
| 241 |
+
video,
|
| 242 |
+
f"{save_dir}/{global_step:06d}-{model_name}_{cloth_name}.mp4",
|
| 243 |
+
n_rows=2,
|
| 244 |
+
fps=src_fps,
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
del tmp_denoising_unet
|
| 248 |
+
del pipe
|
| 249 |
+
torch.cuda.empty_cache()
|
| 250 |
+
|
| 251 |
+
return video
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def main(cfg):
|
| 255 |
+
kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
|
| 256 |
+
accelerator = Accelerator(
|
| 257 |
+
gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps,
|
| 258 |
+
mixed_precision=cfg.solver.mixed_precision,
|
| 259 |
+
log_with="mlflow",
|
| 260 |
+
project_dir="./mlruns",
|
| 261 |
+
kwargs_handlers=[kwargs],
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Make one log on every process with the configuration for debugging.
|
| 265 |
+
logging.basicConfig(
|
| 266 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 267 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 268 |
+
level=logging.INFO,
|
| 269 |
+
)
|
| 270 |
+
logger.info(accelerator.state, main_process_only=False)
|
| 271 |
+
if accelerator.is_local_main_process:
|
| 272 |
+
transformers.utils.logging.set_verbosity_warning()
|
| 273 |
+
diffusers.utils.logging.set_verbosity_info()
|
| 274 |
+
else:
|
| 275 |
+
transformers.utils.logging.set_verbosity_error()
|
| 276 |
+
diffusers.utils.logging.set_verbosity_error()
|
| 277 |
+
|
| 278 |
+
# If passed along, set the training seed now.
|
| 279 |
+
if cfg.seed is not None:
|
| 280 |
+
seed_everything(cfg.seed)
|
| 281 |
+
|
| 282 |
+
exp_name = cfg.exp_name
|
| 283 |
+
save_dir = f"{cfg.output_dir}/{exp_name}"
|
| 284 |
+
if accelerator.is_main_process:
|
| 285 |
+
if not os.path.exists(save_dir):
|
| 286 |
+
os.makedirs(save_dir)
|
| 287 |
+
|
| 288 |
+
# inference_config_path = "./configs/inference/inference_v2.yaml"
|
| 289 |
+
inference_config_path = "./configs/inference/inference.yaml"
|
| 290 |
+
infer_config = OmegaConf.load(inference_config_path)
|
| 291 |
+
|
| 292 |
+
if cfg.weight_dtype == "fp16":
|
| 293 |
+
weight_dtype = torch.float16
|
| 294 |
+
elif cfg.weight_dtype == "bf16":
|
| 295 |
+
weight_dtype = torch.bfloat16
|
| 296 |
+
elif cfg.weight_dtype == "fp32":
|
| 297 |
+
weight_dtype = torch.float32
|
| 298 |
+
else:
|
| 299 |
+
raise ValueError(
|
| 300 |
+
f"Do not support weight dtype: {cfg.weight_dtype} during training"
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs)
|
| 304 |
+
if cfg.enable_zero_snr:
|
| 305 |
+
sched_kwargs.update(
|
| 306 |
+
rescale_betas_zero_snr=True,
|
| 307 |
+
timestep_spacing="trailing",
|
| 308 |
+
prediction_type="v_prediction",
|
| 309 |
+
)
|
| 310 |
+
val_noise_scheduler = DDIMScheduler(**sched_kwargs)
|
| 311 |
+
sched_kwargs.update({"beta_schedule": "scaled_linear"})
|
| 312 |
+
train_noise_scheduler = DDIMScheduler(**sched_kwargs)
|
| 313 |
+
|
| 314 |
+
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
| 315 |
+
cfg.image_encoder_path,
|
| 316 |
+
).to(dtype=weight_dtype, device="cuda")
|
| 317 |
+
vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to(
|
| 318 |
+
"cuda", dtype=weight_dtype
|
| 319 |
+
)
|
| 320 |
+
reference_unet = UNet2DConditionModel.from_pretrained_2d(
|
| 321 |
+
cfg.base_model_path,
|
| 322 |
+
subfolder="unet",
|
| 323 |
+
unet_additional_kwargs={
|
| 324 |
+
"in_channels": 5,
|
| 325 |
+
}
|
| 326 |
+
).to(device="cuda", dtype=weight_dtype)
|
| 327 |
+
|
| 328 |
+
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
| 329 |
+
cfg.base_model_path,
|
| 330 |
+
cfg.mm_path,
|
| 331 |
+
subfolder="unet",
|
| 332 |
+
unet_additional_kwargs=OmegaConf.to_container(
|
| 333 |
+
infer_config.unet_additional_kwargs
|
| 334 |
+
),
|
| 335 |
+
).to(device="cuda")
|
| 336 |
+
|
| 337 |
+
pose_guider = PoseGuider(
|
| 338 |
+
conditioning_embedding_channels=320, block_out_channels=(16, 32, 96, 256)
|
| 339 |
+
).to(device="cuda", dtype=weight_dtype)
|
| 340 |
+
|
| 341 |
+
stage1_ckpt_dir = cfg.stage1_ckpt_dir
|
| 342 |
+
stage1_ckpt_step = cfg.stage1_ckpt_step
|
| 343 |
+
denoising_unet.load_state_dict(
|
| 344 |
+
torch.load(
|
| 345 |
+
os.path.join(stage1_ckpt_dir, f"denoising_unet-{stage1_ckpt_step}.pth"),
|
| 346 |
+
map_location="cpu",
|
| 347 |
+
),
|
| 348 |
+
strict=False,
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
reference_unet.load_state_dict(
|
| 352 |
+
torch.load(
|
| 353 |
+
os.path.join(stage1_ckpt_dir, f"reference_unet-{stage1_ckpt_step}.pth"),
|
| 354 |
+
map_location="cpu",
|
| 355 |
+
),
|
| 356 |
+
strict=False,
|
| 357 |
+
)
|
| 358 |
+
pose_guider.load_state_dict(
|
| 359 |
+
torch.load(
|
| 360 |
+
os.path.join(stage1_ckpt_dir, f"pose_guider-{stage1_ckpt_step}.pth"),
|
| 361 |
+
map_location="cpu",
|
| 362 |
+
),
|
| 363 |
+
strict=False,
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
# Freeze
|
| 369 |
+
vae.requires_grad_(False)
|
| 370 |
+
image_enc.requires_grad_(False)
|
| 371 |
+
reference_unet.requires_grad_(False)
|
| 372 |
+
denoising_unet.requires_grad_(False)
|
| 373 |
+
pose_guider.requires_grad_(False)
|
| 374 |
+
|
| 375 |
+
# Set motion module learnable
|
| 376 |
+
for name, module in denoising_unet.named_modules():
|
| 377 |
+
if "motion_modules" in name:
|
| 378 |
+
for params in module.parameters():
|
| 379 |
+
params.requires_grad = True
|
| 380 |
+
|
| 381 |
+
reference_control_writer = ReferenceAttentionControl(
|
| 382 |
+
reference_unet,
|
| 383 |
+
do_classifier_free_guidance=False,
|
| 384 |
+
mode="write",
|
| 385 |
+
fusion_blocks="full",
|
| 386 |
+
)
|
| 387 |
+
reference_control_reader = ReferenceAttentionControl(
|
| 388 |
+
denoising_unet,
|
| 389 |
+
do_classifier_free_guidance=False,
|
| 390 |
+
mode="read",
|
| 391 |
+
fusion_blocks="full",
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
net = Net(
|
| 395 |
+
reference_unet,
|
| 396 |
+
denoising_unet,
|
| 397 |
+
pose_guider,
|
| 398 |
+
reference_control_writer,
|
| 399 |
+
reference_control_reader,
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
if cfg.solver.enable_xformers_memory_efficient_attention:
|
| 403 |
+
if is_xformers_available():
|
| 404 |
+
reference_unet.enable_xformers_memory_efficient_attention()
|
| 405 |
+
denoising_unet.enable_xformers_memory_efficient_attention()
|
| 406 |
+
else:
|
| 407 |
+
raise ValueError(
|
| 408 |
+
"xformers is not available. Make sure it is installed correctly"
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
if cfg.solver.gradient_checkpointing:
|
| 412 |
+
reference_unet.enable_gradient_checkpointing()
|
| 413 |
+
denoising_unet.enable_gradient_checkpointing()
|
| 414 |
+
|
| 415 |
+
if cfg.solver.scale_lr:
|
| 416 |
+
learning_rate = (
|
| 417 |
+
cfg.solver.learning_rate
|
| 418 |
+
* cfg.solver.gradient_accumulation_steps
|
| 419 |
+
* cfg.data.train_bs
|
| 420 |
+
* accelerator.num_processes
|
| 421 |
+
)
|
| 422 |
+
else:
|
| 423 |
+
learning_rate = cfg.solver.learning_rate
|
| 424 |
+
|
| 425 |
+
# Initialize the optimizer
|
| 426 |
+
if cfg.solver.use_8bit_adam:
|
| 427 |
+
try:
|
| 428 |
+
import bitsandbytes as bnb
|
| 429 |
+
except ImportError:
|
| 430 |
+
raise ImportError(
|
| 431 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
optimizer_cls = bnb.optim.AdamW8bit
|
| 435 |
+
else:
|
| 436 |
+
optimizer_cls = torch.optim.AdamW
|
| 437 |
+
|
| 438 |
+
trainable_params = list(filter(lambda p: p.requires_grad, net.parameters()))
|
| 439 |
+
logger.info(f"Total trainable params {len(trainable_params)}")
|
| 440 |
+
optimizer = optimizer_cls(
|
| 441 |
+
trainable_params,
|
| 442 |
+
lr=learning_rate,
|
| 443 |
+
betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
|
| 444 |
+
weight_decay=cfg.solver.adam_weight_decay,
|
| 445 |
+
eps=cfg.solver.adam_epsilon,
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
# Scheduler
|
| 449 |
+
lr_scheduler = get_scheduler(
|
| 450 |
+
cfg.solver.lr_scheduler,
|
| 451 |
+
optimizer=optimizer,
|
| 452 |
+
num_warmup_steps=cfg.solver.lr_warmup_steps
|
| 453 |
+
* cfg.solver.gradient_accumulation_steps,
|
| 454 |
+
num_training_steps=cfg.solver.max_train_steps
|
| 455 |
+
* cfg.solver.gradient_accumulation_steps,
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
train_dataset = HumanDanceVideoDataset(
|
| 459 |
+
width=cfg.data.train_width,
|
| 460 |
+
height=cfg.data.train_height,
|
| 461 |
+
n_sample_frames=cfg.data.n_sample_frames,
|
| 462 |
+
sample_rate=cfg.data.sample_rate,
|
| 463 |
+
img_scale=(1.0, 1.0),
|
| 464 |
+
data_meta_paths=cfg.data.meta_paths,
|
| 465 |
+
)
|
| 466 |
+
train_dataloader = torch.utils.data.DataLoader(
|
| 467 |
+
train_dataset, batch_size=cfg.data.train_bs, shuffle=True, num_workers=4
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
# Prepare everything with our `accelerator`.
|
| 471 |
+
(
|
| 472 |
+
net,
|
| 473 |
+
optimizer,
|
| 474 |
+
train_dataloader,
|
| 475 |
+
lr_scheduler,
|
| 476 |
+
) = accelerator.prepare(
|
| 477 |
+
net,
|
| 478 |
+
optimizer,
|
| 479 |
+
train_dataloader,
|
| 480 |
+
lr_scheduler,
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
| 484 |
+
num_update_steps_per_epoch = math.ceil(
|
| 485 |
+
len(train_dataloader) / cfg.solver.gradient_accumulation_steps
|
| 486 |
+
)
|
| 487 |
+
# Afterwards we recalculate our number of training epochs
|
| 488 |
+
num_train_epochs = math.ceil(
|
| 489 |
+
cfg.solver.max_train_steps / num_update_steps_per_epoch
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
| 493 |
+
# The trackers initializes automatically on the main process.
|
| 494 |
+
if accelerator.is_main_process:
|
| 495 |
+
run_time = datetime.now().strftime("%Y%m%d-%H%M")
|
| 496 |
+
accelerator.init_trackers(
|
| 497 |
+
exp_name,
|
| 498 |
+
init_kwargs={"mlflow": {"run_name": run_time}},
|
| 499 |
+
)
|
| 500 |
+
# dump config file
|
| 501 |
+
mlflow.log_dict(OmegaConf.to_container(cfg), "config.yaml")
|
| 502 |
+
|
| 503 |
+
# Train!
|
| 504 |
+
total_batch_size = (
|
| 505 |
+
cfg.data.train_bs
|
| 506 |
+
* accelerator.num_processes
|
| 507 |
+
* cfg.solver.gradient_accumulation_steps
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
logger.info("***** Running training *****")
|
| 511 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
| 512 |
+
logger.info(f" Num Epochs = {num_train_epochs}")
|
| 513 |
+
logger.info(f" Instantaneous batch size per device = {cfg.data.train_bs}")
|
| 514 |
+
logger.info(
|
| 515 |
+
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
|
| 516 |
+
)
|
| 517 |
+
logger.info(
|
| 518 |
+
f" Gradient Accumulation steps = {cfg.solver.gradient_accumulation_steps}"
|
| 519 |
+
)
|
| 520 |
+
logger.info(f" Total optimization steps = {cfg.solver.max_train_steps}")
|
| 521 |
+
global_step = 0
|
| 522 |
+
first_epoch = 0
|
| 523 |
+
|
| 524 |
+
# Potentially load in the weights and states from a previous save
|
| 525 |
+
if cfg.resume_from_checkpoint:
|
| 526 |
+
if cfg.resume_from_checkpoint != "latest":
|
| 527 |
+
resume_dir = cfg.resume_from_checkpoint
|
| 528 |
+
else:
|
| 529 |
+
resume_dir = save_dir
|
| 530 |
+
# Get the most recent checkpoint
|
| 531 |
+
dirs = os.listdir(resume_dir)
|
| 532 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
| 533 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
| 534 |
+
path = dirs[-1]
|
| 535 |
+
accelerator.load_state(os.path.join(resume_dir, path))
|
| 536 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
| 537 |
+
global_step = int(path.split("-")[1])
|
| 538 |
+
|
| 539 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
| 540 |
+
resume_step = global_step % num_update_steps_per_epoch
|
| 541 |
+
|
| 542 |
+
# Only show the progress bar once on each machine.
|
| 543 |
+
progress_bar = tqdm(
|
| 544 |
+
range(global_step, cfg.solver.max_train_steps),
|
| 545 |
+
disable=not accelerator.is_local_main_process,
|
| 546 |
+
)
|
| 547 |
+
progress_bar.set_description("Steps")
|
| 548 |
+
|
| 549 |
+
for epoch in range(first_epoch, num_train_epochs):
|
| 550 |
+
train_loss = 0.0
|
| 551 |
+
t_data_start = time.time()
|
| 552 |
+
for step, batch in enumerate(train_dataloader):
|
| 553 |
+
t_data = time.time() - t_data_start
|
| 554 |
+
with accelerator.accumulate(net):
|
| 555 |
+
# Convert videos to latent space
|
| 556 |
+
pixel_values_vid = batch["pixel_values_vid"].to(weight_dtype)
|
| 557 |
+
masked_pixel_values = batch["pixel_values_vid_agnostic"].to(weight_dtype)
|
| 558 |
+
# mask_of_pixel_values = batch["pixel_values_vid_agnostic_mask"].to(weight_dtype)
|
| 559 |
+
mask_of_pixel_values = batch["pixel_values_vid_agnostic_mask"].to(weight_dtype)[:,:,0:1,:,:]
|
| 560 |
+
mask_of_pixel_values=mask_of_pixel_values.transpose(1, 2)#b f c h w->b c f h w
|
| 561 |
+
with torch.no_grad():
|
| 562 |
+
video_length = pixel_values_vid.shape[1]
|
| 563 |
+
|
| 564 |
+
pixel_values_vid = rearrange(
|
| 565 |
+
pixel_values_vid, "b f c h w -> (b f) c h w"
|
| 566 |
+
)
|
| 567 |
+
latents = vae.encode(pixel_values_vid).latent_dist.sample()
|
| 568 |
+
latents = rearrange(
|
| 569 |
+
latents, "(b f) c h w -> b c f h w", f=video_length
|
| 570 |
+
)
|
| 571 |
+
latents = latents * 0.18215
|
| 572 |
+
|
| 573 |
+
masked_pixel_values = rearrange(
|
| 574 |
+
masked_pixel_values, "b f c h w -> (b f) c h w"
|
| 575 |
+
)
|
| 576 |
+
masked_latents = vae.encode(masked_pixel_values).latent_dist.sample()
|
| 577 |
+
masked_latents = rearrange(
|
| 578 |
+
masked_latents, "(b f) c h w -> b c f h w", f=video_length
|
| 579 |
+
)
|
| 580 |
+
masked_latents = masked_latents * 0.18215
|
| 581 |
+
mask_of_latents = torch.nn.functional.interpolate(mask_of_pixel_values, size=(24,mask_of_pixel_values.shape[-2] // 8, mask_of_pixel_values.shape[-1] // 8))
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
noise = torch.randn_like(latents)
|
| 585 |
+
if cfg.noise_offset > 0:
|
| 586 |
+
noise += cfg.noise_offset * torch.randn(
|
| 587 |
+
(latents.shape[0], latents.shape[1], 1, 1, 1),
|
| 588 |
+
device=latents.device,
|
| 589 |
+
)
|
| 590 |
+
bsz = latents.shape[0]
|
| 591 |
+
# Sample a random timestep for each video
|
| 592 |
+
timesteps = torch.randint(
|
| 593 |
+
0,
|
| 594 |
+
train_noise_scheduler.num_train_timesteps,
|
| 595 |
+
(bsz,),
|
| 596 |
+
device=latents.device,
|
| 597 |
+
)
|
| 598 |
+
timesteps = timesteps.long()
|
| 599 |
+
|
| 600 |
+
pixel_values_pose = batch["pixel_values_pose"] # (bs, f, c, H, W)
|
| 601 |
+
pixel_values_pose = pixel_values_pose.transpose(
|
| 602 |
+
1, 2
|
| 603 |
+
) # (bs, c, f, H, W)
|
| 604 |
+
|
| 605 |
+
uncond_fwd = random.random() < cfg.uncond_ratio
|
| 606 |
+
clip_image_list = []
|
| 607 |
+
ref_image_list = []
|
| 608 |
+
cloth_mask_list = []
|
| 609 |
+
for batch_idx, (ref_img, cloth_mask, clip_img) in enumerate(
|
| 610 |
+
zip(
|
| 611 |
+
batch["pixel_cloth"],
|
| 612 |
+
batch["pixel_cloth_mask"],
|
| 613 |
+
batch["clip_ref_img"],
|
| 614 |
+
)
|
| 615 |
+
):
|
| 616 |
+
if uncond_fwd:
|
| 617 |
+
clip_image_list.append(torch.zeros_like(clip_img))
|
| 618 |
+
else:
|
| 619 |
+
clip_image_list.append(clip_img)
|
| 620 |
+
ref_image_list.append(ref_img)
|
| 621 |
+
cloth_mask_list.append(cloth_mask)
|
| 622 |
+
|
| 623 |
+
with torch.no_grad():
|
| 624 |
+
ref_img = torch.stack(ref_image_list, dim=0).to(
|
| 625 |
+
dtype=vae.dtype, device=vae.device
|
| 626 |
+
)
|
| 627 |
+
ref_image_latents = vae.encode(
|
| 628 |
+
ref_img
|
| 629 |
+
).latent_dist.sample() # (bs, d, 64, 64)
|
| 630 |
+
ref_image_latents = ref_image_latents * 0.18215
|
| 631 |
+
|
| 632 |
+
cloth_mask = torch.stack(cloth_mask_list, dim=0).to(
|
| 633 |
+
dtype=vae.dtype, device=vae.device
|
| 634 |
+
)
|
| 635 |
+
cloth_mask = cloth_mask[:,0:1,:,:]
|
| 636 |
+
cloth_mask = torch.nn.functional.interpolate(cloth_mask, size=(cloth_mask.shape[-2] // 8, cloth_mask.shape[-1] // 8))
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
clip_img = torch.stack(clip_image_list, dim=0).to(
|
| 640 |
+
dtype=image_enc.dtype, device=image_enc.device
|
| 641 |
+
)
|
| 642 |
+
clip_img = clip_img.to(device="cuda", dtype=weight_dtype)
|
| 643 |
+
clip_image_embeds = image_enc(
|
| 644 |
+
clip_img.to("cuda", dtype=weight_dtype)
|
| 645 |
+
).image_embeds
|
| 646 |
+
clip_image_embeds = clip_image_embeds.unsqueeze(1) # (bs, 1, d)
|
| 647 |
+
|
| 648 |
+
# add noise
|
| 649 |
+
noisy_latents = train_noise_scheduler.add_noise(
|
| 650 |
+
latents, noise, timesteps
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
# Get the target for loss depending on the prediction type
|
| 654 |
+
if train_noise_scheduler.prediction_type == "epsilon":
|
| 655 |
+
target = noise
|
| 656 |
+
elif train_noise_scheduler.prediction_type == "v_prediction":
|
| 657 |
+
target = train_noise_scheduler.get_velocity(
|
| 658 |
+
latents, noise, timesteps
|
| 659 |
+
)
|
| 660 |
+
else:
|
| 661 |
+
raise ValueError(
|
| 662 |
+
f"Unknown prediction type {train_noise_scheduler.prediction_type}"
|
| 663 |
+
)
|
| 664 |
+
# ---- Forward!!! -----
|
| 665 |
+
model_pred = net(
|
| 666 |
+
# noisy_latents,
|
| 667 |
+
torch.cat([noisy_latents,masked_latents,mask_of_latents],dim=1),
|
| 668 |
+
timesteps,
|
| 669 |
+
# ref_image_latents,
|
| 670 |
+
torch.cat([ref_image_latents, cloth_mask],dim=1),
|
| 671 |
+
clip_image_embeds,
|
| 672 |
+
pixel_values_pose,
|
| 673 |
+
uncond_fwd=uncond_fwd,
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
if cfg.snr_gamma == 0:
|
| 677 |
+
loss = F.mse_loss(
|
| 678 |
+
model_pred.float(), target.float(), reduction="mean"
|
| 679 |
+
)
|
| 680 |
+
else:
|
| 681 |
+
snr = compute_snr(train_noise_scheduler, timesteps)
|
| 682 |
+
if train_noise_scheduler.config.prediction_type == "v_prediction":
|
| 683 |
+
# Velocity objective requires that we add one to SNR values before we divide by them.
|
| 684 |
+
snr = snr + 1
|
| 685 |
+
mse_loss_weights = (
|
| 686 |
+
torch.stack(
|
| 687 |
+
[snr, cfg.snr_gamma * torch.ones_like(timesteps)], dim=1
|
| 688 |
+
).min(dim=1)[0]
|
| 689 |
+
/ snr
|
| 690 |
+
)
|
| 691 |
+
loss = F.mse_loss(
|
| 692 |
+
model_pred.float(), target.float(), reduction="none"
|
| 693 |
+
)
|
| 694 |
+
loss = (
|
| 695 |
+
loss.mean(dim=list(range(1, len(loss.shape))))
|
| 696 |
+
* mse_loss_weights
|
| 697 |
+
)
|
| 698 |
+
loss = loss.mean()
|
| 699 |
+
|
| 700 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
| 701 |
+
avg_loss = accelerator.gather(loss.repeat(cfg.data.train_bs)).mean()
|
| 702 |
+
train_loss += avg_loss.item() / cfg.solver.gradient_accumulation_steps
|
| 703 |
+
|
| 704 |
+
# Backpropagate
|
| 705 |
+
accelerator.backward(loss)
|
| 706 |
+
if accelerator.sync_gradients:
|
| 707 |
+
accelerator.clip_grad_norm_(
|
| 708 |
+
trainable_params,
|
| 709 |
+
cfg.solver.max_grad_norm,
|
| 710 |
+
)
|
| 711 |
+
optimizer.step()
|
| 712 |
+
lr_scheduler.step()
|
| 713 |
+
optimizer.zero_grad()
|
| 714 |
+
|
| 715 |
+
if accelerator.sync_gradients:
|
| 716 |
+
reference_control_reader.clear()
|
| 717 |
+
reference_control_writer.clear()
|
| 718 |
+
progress_bar.update(1)
|
| 719 |
+
global_step += 1
|
| 720 |
+
accelerator.log({"train_loss": train_loss}, step=global_step)
|
| 721 |
+
train_loss = 0.0
|
| 722 |
+
|
| 723 |
+
if global_step % cfg.val.validation_steps == 0:
|
| 724 |
+
if accelerator.is_main_process:
|
| 725 |
+
generator = torch.Generator(device=accelerator.device)
|
| 726 |
+
generator.manual_seed(cfg.seed)
|
| 727 |
+
|
| 728 |
+
log_validation(
|
| 729 |
+
vae=vae,
|
| 730 |
+
image_enc=image_enc,
|
| 731 |
+
net=net,
|
| 732 |
+
scheduler=val_noise_scheduler,
|
| 733 |
+
accelerator=accelerator,
|
| 734 |
+
width=cfg.data.train_width,
|
| 735 |
+
height=cfg.data.train_height,
|
| 736 |
+
global_step=global_step,
|
| 737 |
+
clip_length=cfg.data.n_sample_frames,
|
| 738 |
+
generator=generator,
|
| 739 |
+
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
# for sample_id, sample_dict in enumerate(sample_dicts):
|
| 743 |
+
# sample_name = sample_dict["name"]
|
| 744 |
+
# vid = sample_dict["vid"]
|
| 745 |
+
# with TemporaryDirectory() as temp_dir:
|
| 746 |
+
# out_file = Path(
|
| 747 |
+
# f"{temp_dir}/{global_step:06d}-{sample_name}.gif"
|
| 748 |
+
# )
|
| 749 |
+
# save_videos_grid(vid, out_file, n_rows=2)
|
| 750 |
+
# mlflow.log_artifact(out_file)
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
logs = {
|
| 754 |
+
"step_loss": loss.detach().item(),
|
| 755 |
+
"lr": lr_scheduler.get_last_lr()[0],
|
| 756 |
+
"td": f"{t_data:.2f}s",
|
| 757 |
+
}
|
| 758 |
+
t_data_start = time.time()
|
| 759 |
+
progress_bar.set_postfix(**logs)
|
| 760 |
+
|
| 761 |
+
if global_step >= cfg.solver.max_train_steps:
|
| 762 |
+
break
|
| 763 |
+
|
| 764 |
+
# save model after each epoch
|
| 765 |
+
if accelerator.is_main_process:
|
| 766 |
+
save_path = os.path.join(save_dir, f"checkpoint-{global_step}")
|
| 767 |
+
delete_additional_ckpt(save_dir, 1)
|
| 768 |
+
# accelerator.save_state(save_path)
|
| 769 |
+
# save motion module only
|
| 770 |
+
unwrap_net = accelerator.unwrap_model(net)
|
| 771 |
+
save_checkpoint(
|
| 772 |
+
unwrap_net.denoising_unet,
|
| 773 |
+
save_dir,
|
| 774 |
+
"motion_module",
|
| 775 |
+
global_step,
|
| 776 |
+
total_limit=3,
|
| 777 |
+
)
|
| 778 |
+
|
| 779 |
+
# Create the pipeline using the trained modules and save it.
|
| 780 |
+
accelerator.wait_for_everyone()
|
| 781 |
+
accelerator.end_training()
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
def save_checkpoint(model, save_dir, prefix, ckpt_num, total_limit=None):
|
| 785 |
+
save_path = osp.join(save_dir, f"{prefix}-{ckpt_num}.pth")
|
| 786 |
+
|
| 787 |
+
if total_limit is not None:
|
| 788 |
+
checkpoints = os.listdir(save_dir)
|
| 789 |
+
checkpoints = [d for d in checkpoints if d.startswith(prefix)]
|
| 790 |
+
checkpoints = sorted(
|
| 791 |
+
checkpoints, key=lambda x: int(x.split("-")[1].split(".")[0])
|
| 792 |
+
)
|
| 793 |
+
|
| 794 |
+
if len(checkpoints) >= total_limit:
|
| 795 |
+
num_to_remove = len(checkpoints) - total_limit + 1
|
| 796 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
| 797 |
+
logger.info(
|
| 798 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
| 799 |
+
)
|
| 800 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
| 801 |
+
|
| 802 |
+
for removing_checkpoint in removing_checkpoints:
|
| 803 |
+
removing_checkpoint = os.path.join(save_dir, removing_checkpoint)
|
| 804 |
+
os.remove(removing_checkpoint)
|
| 805 |
+
|
| 806 |
+
mm_state_dict = OrderedDict()
|
| 807 |
+
state_dict = model.state_dict()
|
| 808 |
+
for key in state_dict:
|
| 809 |
+
if "motion_module" in key:
|
| 810 |
+
mm_state_dict[key] = state_dict[key]
|
| 811 |
+
|
| 812 |
+
torch.save(mm_state_dict, save_path)
|
| 813 |
+
|
| 814 |
+
|
| 815 |
+
def decode_latents(vae, latents):
|
| 816 |
+
video_length = latents.shape[2]
|
| 817 |
+
latents = 1 / 0.18215 * latents
|
| 818 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
| 819 |
+
# video = self.vae.decode(latents).sample
|
| 820 |
+
video = []
|
| 821 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
| 822 |
+
video.append(vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
| 823 |
+
video = torch.cat(video)
|
| 824 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
| 825 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
| 826 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
| 827 |
+
video = video.cpu().float().numpy()
|
| 828 |
+
return video
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
if __name__ == "__main__":
|
| 832 |
+
parser = argparse.ArgumentParser()
|
| 833 |
+
parser.add_argument("--config", type=str, default="./configs/training/stage2.yaml")
|
| 834 |
+
args = parser.parse_args()
|
| 835 |
+
|
| 836 |
+
if args.config[-5:] == ".yaml":
|
| 837 |
+
config = OmegaConf.load(args.config)
|
| 838 |
+
elif args.config[-3:] == ".py":
|
| 839 |
+
config = import_filename(args.config).cfg
|
| 840 |
+
else:
|
| 841 |
+
raise ValueError("Do not support this format config file")
|
| 842 |
+
main(config)
|
vivid.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import sys
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
| 8 |
+
from omegaconf import OmegaConf
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from transformers import CLIPVisionModelWithProjection
|
| 12 |
+
|
| 13 |
+
from src.models.pose_guider import PoseGuider
|
| 14 |
+
from src.models.unet_2d_condition import UNet2DConditionModel
|
| 15 |
+
from src.models.unet_3d import UNet3DConditionModel
|
| 16 |
+
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
| 17 |
+
from src.utils.util import get_fps, read_frames, save_videos_grid
|
| 18 |
+
|
| 19 |
+
def parse_args():
|
| 20 |
+
parser = argparse.ArgumentParser()
|
| 21 |
+
parser.add_argument("--config",type=str,default="/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/configs/prompts/valid.yaml")
|
| 22 |
+
parser.add_argument("-W", type=int, default=384)
|
| 23 |
+
parser.add_argument("-H", type=int, default=512)
|
| 24 |
+
parser.add_argument("-L", type=int, default=24)
|
| 25 |
+
|
| 26 |
+
parser.add_argument("--seed", type=int, default=42)
|
| 27 |
+
parser.add_argument("--cfg", type=float, default=3.5)
|
| 28 |
+
parser.add_argument("--steps", type=int, default=20)
|
| 29 |
+
parser.add_argument("--fps", type=int)
|
| 30 |
+
args = parser.parse_args()
|
| 31 |
+
|
| 32 |
+
return args
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def main():
|
| 36 |
+
args = parse_args()
|
| 37 |
+
|
| 38 |
+
config = OmegaConf.load(args.config)
|
| 39 |
+
|
| 40 |
+
if config.weight_dtype == "fp16":
|
| 41 |
+
weight_dtype = torch.float16
|
| 42 |
+
else:
|
| 43 |
+
weight_dtype = torch.float32
|
| 44 |
+
|
| 45 |
+
vae = AutoencoderKL.from_pretrained(
|
| 46 |
+
config.pretrained_vae_path,
|
| 47 |
+
).to("cuda", dtype=weight_dtype)
|
| 48 |
+
|
| 49 |
+
reference_unet = UNet2DConditionModel.from_pretrained_2d(
|
| 50 |
+
config.pretrained_base_model_path,
|
| 51 |
+
subfolder="unet",
|
| 52 |
+
unet_additional_kwargs={
|
| 53 |
+
"in_channels": 5,
|
| 54 |
+
}
|
| 55 |
+
).to(dtype=weight_dtype, device="cuda")
|
| 56 |
+
|
| 57 |
+
inference_config_path = config.inference_config #'/mnt/lpai-dione/ssai/cvg/team/wjj/ViViD/configs/inference/inference.yaml'
|
| 58 |
+
infer_config = OmegaConf.load(inference_config_path)
|
| 59 |
+
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
| 60 |
+
config.pretrained_base_model_path,
|
| 61 |
+
config.motion_module_path,
|
| 62 |
+
subfolder="unet",
|
| 63 |
+
unet_additional_kwargs=infer_config.unet_additional_kwargs,
|
| 64 |
+
).to(dtype=weight_dtype, device="cuda")
|
| 65 |
+
|
| 66 |
+
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
|
| 67 |
+
dtype=weight_dtype, device="cuda"
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
| 72 |
+
config.image_encoder_path
|
| 73 |
+
).to(dtype=weight_dtype, device="cuda")
|
| 74 |
+
|
| 75 |
+
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
| 76 |
+
scheduler = DDIMScheduler(**sched_kwargs)
|
| 77 |
+
|
| 78 |
+
seed = config.get("seed",args.seed)
|
| 79 |
+
generator = torch.manual_seed(seed)
|
| 80 |
+
|
| 81 |
+
width, height = args.W, args.H
|
| 82 |
+
clip_length = config.get("L",args.L)
|
| 83 |
+
steps = args.steps
|
| 84 |
+
guidance_scale = args.cfg
|
| 85 |
+
|
| 86 |
+
# load pretrained weights
|
| 87 |
+
denoising_unet.load_state_dict(
|
| 88 |
+
torch.load(config.denoising_unet_path, map_location="cpu"),
|
| 89 |
+
strict=False,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
reference_unet.load_state_dict(
|
| 93 |
+
torch.load(config.reference_unet_path, map_location="cpu"),
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
pose_guider.load_state_dict(
|
| 98 |
+
torch.load(config.pose_guider_path, map_location="cpu"),
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
pipe = Pose2VideoPipeline(
|
| 104 |
+
vae=vae,
|
| 105 |
+
image_encoder=image_enc,
|
| 106 |
+
reference_unet=reference_unet,
|
| 107 |
+
denoising_unet=denoising_unet,
|
| 108 |
+
pose_guider=pose_guider,
|
| 109 |
+
scheduler=scheduler,
|
| 110 |
+
)
|
| 111 |
+
# 设置日志文件路径
|
| 112 |
+
# log_file_path = "model_structures.log"
|
| 113 |
+
# with open(log_file_path, 'w') as log_file:
|
| 114 |
+
# # 重定向标准输出到日志文件
|
| 115 |
+
# orig_stdout = sys.stdout # 保存原始的标准输出
|
| 116 |
+
# sys.stdout = log_file # 将标准输出重定向到日志文件
|
| 117 |
+
|
| 118 |
+
# # 打印模型结构
|
| 119 |
+
# print("Denoising UNet structure:")
|
| 120 |
+
# print(denoising_unet) # 打印 denoising_unet 的结构
|
| 121 |
+
|
| 122 |
+
# print("Reference UNet structure:")
|
| 123 |
+
# print(reference_unet) # 打印 reference_unet 的结构
|
| 124 |
+
|
| 125 |
+
# print("Pose Guider structure:")
|
| 126 |
+
# print(pose_guider) # 打印 pose_guider 的结构
|
| 127 |
+
|
| 128 |
+
# print("image_enc:")
|
| 129 |
+
# print(image_enc)
|
| 130 |
+
|
| 131 |
+
# print("Pose Guider structure:")
|
| 132 |
+
# print(pose_guider)
|
| 133 |
+
|
| 134 |
+
# print("pipe:")
|
| 135 |
+
# print(pipe)
|
| 136 |
+
# # 恢复标准输出
|
| 137 |
+
# sys.stdout = orig_stdout # 还原标准输出
|
| 138 |
+
# print(f"The model structures have been saved to {log_file_path}.")
|
| 139 |
+
pipe = pipe.to("cuda", dtype=weight_dtype)
|
| 140 |
+
|
| 141 |
+
date_str = datetime.now().strftime("%Y%m%d")
|
| 142 |
+
time_str = datetime.now().strftime("%H%M")
|
| 143 |
+
save_dir_name = f"{time_str}--seed_{seed}-{args.W}x{args.H}"
|
| 144 |
+
|
| 145 |
+
save_dir = Path(f"output/{date_str}/{save_dir_name}")
|
| 146 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
| 147 |
+
|
| 148 |
+
model_video_paths = config.model_video_paths
|
| 149 |
+
cloth_image_paths = config.cloth_image_paths
|
| 150 |
+
|
| 151 |
+
transform = transforms.Compose(
|
| 152 |
+
[transforms.Resize((height, width)), transforms.ToTensor()]
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
for model_image_path in model_video_paths:
|
| 157 |
+
# print("model_image_path", model_image_path)
|
| 158 |
+
src_fps = get_fps(model_image_path)
|
| 159 |
+
|
| 160 |
+
model_name = Path(model_image_path).stem
|
| 161 |
+
agnostic_path=model_image_path.replace("videos","agnostic") #data/videos/upper1.mp4——>data/agnostic/upper1.mp4
|
| 162 |
+
agn_mask_path=model_image_path.replace("videos","agnostic_mask")
|
| 163 |
+
densepose_path=model_image_path.replace("videos","densepose")
|
| 164 |
+
|
| 165 |
+
video_tensor_list=[]
|
| 166 |
+
video_images=read_frames(model_image_path)
|
| 167 |
+
|
| 168 |
+
clip_length = len(video_images) # 设置 clip_length 为输入视频的总帧数
|
| 169 |
+
# clip_length=48
|
| 170 |
+
for vid_image_pil in video_images[:clip_length]: #clip_length=24
|
| 171 |
+
video_tensor_list.append(transform(vid_image_pil))
|
| 172 |
+
|
| 173 |
+
video_tensor = torch.stack(video_tensor_list, dim=0) # (f, c, h, w)
|
| 174 |
+
video_tensor = video_tensor.transpose(0, 1)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
agnostic_list=[]
|
| 178 |
+
agnostic_images=read_frames(agnostic_path)
|
| 179 |
+
for agnostic_image_pil in agnostic_images[:clip_length]:
|
| 180 |
+
agnostic_list.append(agnostic_image_pil)
|
| 181 |
+
|
| 182 |
+
agn_mask_list=[]
|
| 183 |
+
agn_mask_images=read_frames(agn_mask_path)
|
| 184 |
+
# print(" agn_mask_images", agn_mask_images)
|
| 185 |
+
for agn_mask_image_pil in agn_mask_images[:clip_length]:
|
| 186 |
+
agn_mask_list.append(agn_mask_image_pil)
|
| 187 |
+
|
| 188 |
+
pose_list=[]
|
| 189 |
+
pose_images=read_frames(densepose_path)
|
| 190 |
+
for pose_image_pil in pose_images[:clip_length]:
|
| 191 |
+
pose_list.append(pose_image_pil)
|
| 192 |
+
|
| 193 |
+
video_tensor = video_tensor.unsqueeze(0)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
for cloth_image_path in cloth_image_paths:
|
| 197 |
+
cloth_name = Path(cloth_image_path).stem
|
| 198 |
+
cloth_image_pil = Image.open(cloth_image_path).convert("RGB")
|
| 199 |
+
|
| 200 |
+
cloth_mask_path=cloth_image_path.replace("cloth","cloth_mask")
|
| 201 |
+
cloth_mask_pil = Image.open(cloth_mask_path).convert("RGB")
|
| 202 |
+
|
| 203 |
+
pipeline_output = pipe(
|
| 204 |
+
agnostic_list,
|
| 205 |
+
agn_mask_list,
|
| 206 |
+
cloth_image_pil,
|
| 207 |
+
cloth_mask_pil,
|
| 208 |
+
pose_list,
|
| 209 |
+
width,
|
| 210 |
+
height,
|
| 211 |
+
clip_length,
|
| 212 |
+
steps,
|
| 213 |
+
guidance_scale,
|
| 214 |
+
generator=generator,
|
| 215 |
+
)
|
| 216 |
+
# print("pipeline_output", pipeline_output)
|
| 217 |
+
video = pipeline_output.videos
|
| 218 |
+
|
| 219 |
+
video = torch.cat([video_tensor,video], dim=0)
|
| 220 |
+
save_videos_grid(
|
| 221 |
+
video,
|
| 222 |
+
f"{save_dir}/{model_name}_{cloth_name}_{args.H}x{args.W}_{int(guidance_scale)}_{time_str}.mp4",
|
| 223 |
+
n_rows=2,
|
| 224 |
+
fps=src_fps if args.fps is None else args.fps,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
if __name__ == "__main__":
|
| 229 |
+
main()
|
vividfuxian_motion/20241211/1715/803128_detail_1060638_in_xl.mp4
ADDED
|
Binary file (95.1 kB). View file
|
|
|
vividfuxian_motion/20241212/1437/000004-803128_detail_1060638_in_xl.mp4
ADDED
|
Binary file (94 kB). View file
|
|
|
vividfuxian_motion/20241212/1506/000200-803128_detail_1060638_in_xl.mp4
ADDED
|
Binary file (98.1 kB). View file
|
|
|
vividfuxian_motion/20241212/1629/000600-803128_detail_1060638_in_xl.mp4
ADDED
|
Binary file (97.8 kB). View file
|
|
|
vividfuxian_valid/stage1/000010-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/000200-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/000400-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/000600-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/000800-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/001000-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/001200-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/001600-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/001800-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/002000-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/002200-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/002400-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/002600-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/002800-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/003000-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/003400-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/003600-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/003800-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/004200-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/004400-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/004600-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/004800-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/005200-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/005400-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/005600-803137_in_xl_812294_in_xl.jpg
ADDED
|
vividfuxian_valid/stage1/005800-803137_in_xl_812294_in_xl.jpg
ADDED
|