model
Browse files- .gitignore +10 -0
- README.md +27 -0
- pyproject.toml +21 -0
- requirements.txt +3 -0
- scripts/evaluate.py +9 -0
- scripts/train.py +4 -0
- symmetric_test/__init__.py +0 -0
- symmetric_test/evaluate.py +80 -0
- symmetric_test/model.py +23 -0
- symmetric_test/train.py +52 -0
.gitignore
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Training data
|
| 2 |
+
data
|
| 3 |
+
# Results (this is where the model stats are saved)
|
| 4 |
+
results
|
| 5 |
+
# Model weights
|
| 6 |
+
model_weights.pth
|
| 7 |
+
# Python metadata
|
| 8 |
+
venv
|
| 9 |
+
__pycache__
|
| 10 |
+
symmetric_test.egg-info
|
README.md
CHANGED
|
@@ -1,3 +1,30 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
tags:
|
| 3 |
+
- image-classification
|
| 4 |
+
- mnist
|
| 5 |
+
- pytorch
|
| 6 |
license: mit
|
| 7 |
---
|
| 8 |
+
|
| 9 |
+
# MNIST Digit Classifier
|
| 10 |
+
|
| 11 |
+
A convolutional neural network trained on MNIST to classify digits 0-9.
|
| 12 |
+
|
| 13 |
+
## Usage
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
from src.model import DigitClassifier
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
model = DigitClassifier()
|
| 20 |
+
model.load_state_dict(torch.load("model_weights.pth"))
|
| 21 |
+
model.eval()
|
| 22 |
+
|
| 23 |
+
# Preprocessing (same as training):
|
| 24 |
+
transform = transforms.Compose([
|
| 25 |
+
transforms.Resize((28, 28)),
|
| 26 |
+
transforms.Grayscale(),
|
| 27 |
+
transforms.ToTensor(),
|
| 28 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
| 29 |
+
])
|
| 30 |
+
```
|
pyproject.toml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[build-system]
|
| 2 |
+
requires = ["setuptools", "wheel"]
|
| 3 |
+
build-backend = "setuptools.build_meta"
|
| 4 |
+
|
| 5 |
+
[project]
|
| 6 |
+
name = "symmetric_test"
|
| 7 |
+
version = "0.1.0"
|
| 8 |
+
description = "Classifies images of numbers from 0-9"
|
| 9 |
+
readme = "README.md"
|
| 10 |
+
requires-python = ">=3.8"
|
| 11 |
+
authors = [
|
| 12 |
+
{ name = "SupremoUGH" }
|
| 13 |
+
]
|
| 14 |
+
license = { text = "MIT License" }
|
| 15 |
+
dependencies = [] # Add dependencies here if needed
|
| 16 |
+
|
| 17 |
+
[project.urls]
|
| 18 |
+
Homepage = "https://huggingface.co/SupremoUGH/symmetric_test"
|
| 19 |
+
|
| 20 |
+
[tool.setuptools.packages.find]
|
| 21 |
+
include = ["symmetric_test"] # Ensure it finds the correct package
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.1
|
| 2 |
+
torchvision>=0.15.2
|
| 3 |
+
huggingface_hub>=0.16.4
|
scripts/evaluate.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from symmetric_test.evaluate import evaluate_model, upload_results
|
| 2 |
+
|
| 3 |
+
if __name__ == "__main__":
|
| 4 |
+
# Evaluate
|
| 5 |
+
metrics = evaluate_model()
|
| 6 |
+
print(f"Test Accuracy: {metrics['accuracy']:.2%}")
|
| 7 |
+
|
| 8 |
+
# Upload results to Hub
|
| 9 |
+
upload_results()
|
scripts/train.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from symmetric_test.train import train
|
| 2 |
+
|
| 3 |
+
if __name__ == "__main__":
|
| 4 |
+
train()
|
symmetric_test/__init__.py
ADDED
|
File without changes
|
symmetric_test/evaluate.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from torchvision import datasets, transforms
|
| 4 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import json
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from huggingface_hub import HfApi
|
| 9 |
+
from .model import DigitClassifier
|
| 10 |
+
|
| 11 |
+
def evaluate_model(model_path="model_weights.pth", output_dir="results"):
|
| 12 |
+
# Setup
|
| 13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
Path(output_dir).mkdir(exist_ok=True)
|
| 15 |
+
|
| 16 |
+
# Load model
|
| 17 |
+
model = DigitClassifier()
|
| 18 |
+
model.load_state_dict(torch.load(model_path))
|
| 19 |
+
model.to(device)
|
| 20 |
+
model.eval()
|
| 21 |
+
|
| 22 |
+
# Data (MNIST Test Set)
|
| 23 |
+
transform = transforms.Compose([
|
| 24 |
+
transforms.ToTensor(),
|
| 25 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
| 26 |
+
])
|
| 27 |
+
test_set = datasets.MNIST(
|
| 28 |
+
root='./data',
|
| 29 |
+
train=False,
|
| 30 |
+
download=True,
|
| 31 |
+
transform=transform
|
| 32 |
+
)
|
| 33 |
+
test_loader = torch.utils.data.DataLoader(test_set, batch_size=64, shuffle=False)
|
| 34 |
+
|
| 35 |
+
# Evaluation
|
| 36 |
+
all_preds = []
|
| 37 |
+
all_targets = []
|
| 38 |
+
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
for images, labels in test_loader:
|
| 41 |
+
images = images.to(device)
|
| 42 |
+
outputs = model(images)
|
| 43 |
+
_, preds = torch.max(outputs, 1)
|
| 44 |
+
all_preds.extend(preds.cpu().numpy())
|
| 45 |
+
all_targets.extend(labels.cpu().numpy())
|
| 46 |
+
|
| 47 |
+
# Metrics
|
| 48 |
+
metrics = {
|
| 49 |
+
"accuracy": np.mean(np.array(all_preds) == np.array(all_targets)),
|
| 50 |
+
"classification_report": classification_report(all_targets, all_preds, output_dict=True),
|
| 51 |
+
"confusion_matrix": confusion_matrix(all_targets, all_preds).tolist()
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
# Save metrics
|
| 55 |
+
with open(Path(output_dir)/"metrics.json", "w") as f:
|
| 56 |
+
json.dump(metrics, f, indent=2)
|
| 57 |
+
|
| 58 |
+
# Plot confusion matrix
|
| 59 |
+
plt.figure(figsize=(10, 8))
|
| 60 |
+
plt.imshow(metrics["confusion_matrix"], cmap='Blues')
|
| 61 |
+
plt.colorbar()
|
| 62 |
+
plt.title("Confusion Matrix")
|
| 63 |
+
plt.xlabel("Predicted")
|
| 64 |
+
plt.ylabel("True")
|
| 65 |
+
plt.xticks(range(10))
|
| 66 |
+
plt.yticks(range(10))
|
| 67 |
+
plt.savefig(Path(output_dir)/"confusion_matrix.png")
|
| 68 |
+
plt.close()
|
| 69 |
+
|
| 70 |
+
return metrics
|
| 71 |
+
|
| 72 |
+
def upload_results(repo_id="SupremoUGH/symmetric_test"):
|
| 73 |
+
api = HfApi()
|
| 74 |
+
api.upload_folder(
|
| 75 |
+
folder_path="results",
|
| 76 |
+
path_in_repo="evaluation",
|
| 77 |
+
repo_id=repo_id,
|
| 78 |
+
repo_type="model"
|
| 79 |
+
)
|
| 80 |
+
|
symmetric_test/model.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
|
| 3 |
+
class DigitClassifier(nn.Module):
|
| 4 |
+
def __init__(self):
|
| 5 |
+
super().__init__()
|
| 6 |
+
self.conv_block = nn.Sequential(
|
| 7 |
+
nn.Conv2d(1, 32, 3),
|
| 8 |
+
nn.ReLU(),
|
| 9 |
+
nn.MaxPool2d(2),
|
| 10 |
+
nn.Conv2d(32, 64, 3),
|
| 11 |
+
nn.ReLU(),
|
| 12 |
+
nn.MaxPool2d(2)
|
| 13 |
+
)
|
| 14 |
+
self.classifier = nn.Sequential(
|
| 15 |
+
nn.Linear(64*5*5, 128),
|
| 16 |
+
nn.ReLU(),
|
| 17 |
+
nn.Linear(128, 10)
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def forward(self, x):
|
| 21 |
+
x = self.conv_block(x)
|
| 22 |
+
x = x.view(x.size(0), -1)
|
| 23 |
+
return self.classifier(x)
|
symmetric_test/train.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch import optim
|
| 4 |
+
from torchvision import datasets, transforms
|
| 5 |
+
from huggingface_hub import HfApi, Repository
|
| 6 |
+
from .model import DigitClassifier
|
| 7 |
+
|
| 8 |
+
# Config (better to put in separate config.yaml)
|
| 9 |
+
BATCH_SIZE = 64
|
| 10 |
+
EPOCHS = 5
|
| 11 |
+
LR = 0.001
|
| 12 |
+
|
| 13 |
+
def train():
|
| 14 |
+
# Initialize
|
| 15 |
+
model = DigitClassifier()
|
| 16 |
+
optimizer = optim.Adam(model.parameters(), lr=LR)
|
| 17 |
+
criterion = nn.CrossEntropyLoss()
|
| 18 |
+
|
| 19 |
+
# Data
|
| 20 |
+
transform = transforms.Compose([
|
| 21 |
+
transforms.ToTensor(),
|
| 22 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
| 23 |
+
])
|
| 24 |
+
|
| 25 |
+
train_loader = torch.utils.data.DataLoader(
|
| 26 |
+
datasets.MNIST('./data', train=True, download=True, transform=transform),
|
| 27 |
+
batch_size=BATCH_SIZE,
|
| 28 |
+
shuffle=True
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Training loop
|
| 32 |
+
for epoch in range(EPOCHS):
|
| 33 |
+
model.train()
|
| 34 |
+
for batch_idx, (data, target) in enumerate(train_loader):
|
| 35 |
+
optimizer.zero_grad()
|
| 36 |
+
output = model(data)
|
| 37 |
+
loss = criterion(output, target)
|
| 38 |
+
loss.backward()
|
| 39 |
+
optimizer.step()
|
| 40 |
+
|
| 41 |
+
# Save artifacts
|
| 42 |
+
torch.save(model.state_dict(), "model_weights.pth")
|
| 43 |
+
|
| 44 |
+
# Upload to Hub
|
| 45 |
+
api = HfApi()
|
| 46 |
+
api.upload_file(
|
| 47 |
+
path_or_fileobj="model_weights.pth",
|
| 48 |
+
path_in_repo="model_weights.pth",
|
| 49 |
+
repo_id="SupremoUGH/symmetric_test",
|
| 50 |
+
repo_type="model",
|
| 51 |
+
token=True # Explicitly use your credentials
|
| 52 |
+
)
|