| [2025-12-08 16:16:27 swin_tiny_patch4_window7_224] (main.py 348): INFO Full config saved to output/swin_tiny_patch4_window7_224/default/config.json | |
| [2025-12-08 16:16:27 swin_tiny_patch4_window7_224] (main.py 351): INFO AMP_ENABLE: true | |
| AMP_OPT_LEVEL: '' | |
| AUG: | |
| AUTO_AUGMENT: rand-m9-mstd0.5-inc1 | |
| COLOR_JITTER: 0.4 | |
| CUTMIX: 1.0 | |
| CUTMIX_MINMAX: null | |
| MIXUP: 0.8 | |
| MIXUP_MODE: batch | |
| MIXUP_PROB: 1.0 | |
| MIXUP_SWITCH_PROB: 0.5 | |
| RECOUNT: 1 | |
| REMODE: pixel | |
| REPROB: 0.25 | |
| BASE: | |
| - '' | |
| DATA: | |
| BATCH_SIZE: 16 | |
| CACHE_MODE: part | |
| DATASET: imagenet | |
| DATA_PATH: /content/drive/MyDrive/Tulsi_train-70_val-30 | |
| IMG_SIZE: 224 | |
| INTERPOLATION: bicubic | |
| MASK_PATCH_SIZE: 32 | |
| MASK_RATIO: 0.6 | |
| NUM_WORKERS: 8 | |
| PIN_MEMORY: true | |
| ZIP_MODE: false | |
| ENABLE_AMP: false | |
| EVAL_MODE: false | |
| FUSED_LAYERNORM: false | |
| FUSED_WINDOW_PROCESS: false | |
| LOCAL_RANK: 0 | |
| MODEL: | |
| DROP_PATH_RATE: 0.2 | |
| DROP_RATE: 0.0 | |
| LABEL_SMOOTHING: 0.1 | |
| NAME: swin_tiny_patch4_window7_224 | |
| NUM_CLASSES: 1000 | |
| PRETRAINED: /content/Swin-Transformer/pretrained_weights/swin_tiny_patch4_window7_224.pth | |
| RESUME: '' | |
| SIMMIM: | |
| NORM_TARGET: | |
| ENABLE: false | |
| PATCH_SIZE: 47 | |
| SWIN: | |
| APE: false | |
| DEPTHS: | |
| - 2 | |
| - 2 | |
| - 6 | |
| - 2 | |
| EMBED_DIM: 96 | |
| IN_CHANS: 3 | |
| MLP_RATIO: 4.0 | |
| NUM_HEADS: | |
| - 3 | |
| - 6 | |
| - 12 | |
| - 24 | |
| PATCH_NORM: true | |
| PATCH_SIZE: 4 | |
| QKV_BIAS: true | |
| QK_SCALE: null | |
| WINDOW_SIZE: 7 | |
| SWINV2: | |
| APE: false | |
| DEPTHS: | |
| - 2 | |
| - 2 | |
| - 6 | |
| - 2 | |
| EMBED_DIM: 96 | |
| IN_CHANS: 3 | |
| MLP_RATIO: 4.0 | |
| NUM_HEADS: | |
| - 3 | |
| - 6 | |
| - 12 | |
| - 24 | |
| PATCH_NORM: true | |
| PATCH_SIZE: 4 | |
| PRETRAINED_WINDOW_SIZES: | |
| - 0 | |
| - 0 | |
| - 0 | |
| - 0 | |
| QKV_BIAS: true | |
| WINDOW_SIZE: 7 | |
| SWIN_MLP: | |
| APE: false | |
| DEPTHS: | |
| - 2 | |
| - 2 | |
| - 6 | |
| - 2 | |
| EMBED_DIM: 96 | |
| IN_CHANS: 3 | |
| MLP_RATIO: 4.0 | |
| NUM_HEADS: | |
| - 3 | |
| - 6 | |
| - 12 | |
| - 24 | |
| PATCH_NORM: true | |
| PATCH_SIZE: 4 | |
| WINDOW_SIZE: 7 | |
| SWIN_MOE: | |
| APE: false | |
| AUX_LOSS_WEIGHT: 0.01 | |
| CAPACITY_FACTOR: 1.25 | |
| COSINE_ROUTER: false | |
| COSINE_ROUTER_DIM: 256 | |
| COSINE_ROUTER_INIT_T: 0.5 | |
| DEPTHS: | |
| - 2 | |
| - 2 | |
| - 6 | |
| - 2 | |
| EMBED_DIM: 96 | |
| GATE_NOISE: 1.0 | |
| INIT_STD: 0.02 | |
| IN_CHANS: 3 | |
| IS_GSHARD_LOSS: false | |
| MLP_FC2_BIAS: true | |
| MLP_RATIO: 4.0 | |
| MOE_BLOCKS: | |
| - - -1 | |
| - - -1 | |
| - - -1 | |
| - - -1 | |
| MOE_DROP: 0.0 | |
| NORMALIZE_GATE: false | |
| NUM_HEADS: | |
| - 3 | |
| - 6 | |
| - 12 | |
| - 24 | |
| NUM_LOCAL_EXPERTS: 1 | |
| PATCH_NORM: true | |
| PATCH_SIZE: 4 | |
| PRETRAINED_WINDOW_SIZES: | |
| - 0 | |
| - 0 | |
| - 0 | |
| - 0 | |
| QKV_BIAS: true | |
| QK_SCALE: null | |
| TOP_VALUE: 1 | |
| USE_BPR: true | |
| WINDOW_SIZE: 7 | |
| TYPE: swin | |
| OUTPUT: output/swin_tiny_patch4_window7_224/default | |
| PRINT_FREQ: 10 | |
| SAVE_FREQ: 1 | |
| SEED: 0 | |
| TAG: default | |
| TEST: | |
| CROP: true | |
| SEQUENTIAL: false | |
| SHUFFLE: false | |
| THROUGHPUT_MODE: false | |
| TRAIN: | |
| ACCUMULATION_STEPS: 2 | |
| AUTO_RESUME: true | |
| BASE_LR: 3.125e-05 | |
| CLIP_GRAD: 5.0 | |
| EPOCHS: 15 | |
| LAYER_DECAY: 1.0 | |
| LR_SCHEDULER: | |
| DECAY_EPOCHS: 30 | |
| DECAY_RATE: 0.1 | |
| GAMMA: 0.1 | |
| MULTISTEPS: [] | |
| NAME: cosine | |
| WARMUP_PREFIX: true | |
| MIN_LR: 3.125e-07 | |
| MOE: | |
| SAVE_MASTER: false | |
| OPTIMIZER: | |
| BETAS: | |
| - 0.9 | |
| - 0.999 | |
| EPS: 1.0e-08 | |
| MOMENTUM: 0.9 | |
| NAME: adamw | |
| START_EPOCH: 0 | |
| USE_CHECKPOINT: true | |
| WARMUP_EPOCHS: 3 | |
| WARMUP_LR: 3.125e-08 | |
| WEIGHT_DECAY: 0.05 | |
| [2025-12-08 16:16:27 swin_tiny_patch4_window7_224] (main.py 352): INFO {"cfg": "configs/swin/swin_tiny_patch4_window7_224.yaml", "opts": ["TRAIN.EPOCHS", "15", "TRAIN.WARMUP_EPOCHS", "3"], "batch_size": 16, "data_path": "/content/drive/MyDrive/Tulsi_train-70_val-30", "zip": false, "cache_mode": "part", "pretrained": "/content/Swin-Transformer/pretrained_weights/swin_tiny_patch4_window7_224.pth", "resume": null, "accumulation_steps": 2, "use_checkpoint": true, "disable_amp": false, "amp_opt_level": null, "output": "output", "tag": null, "eval": false, "throughput": false, "fused_window_process": false, "fused_layernorm": false, "optim": null} | |
| [2025-12-08 16:16:35 swin_tiny_patch4_window7_224] (main.py 93): INFO Creating model:swin/swin_tiny_patch4_window7_224 | |
| [2025-12-08 16:16:36 swin_tiny_patch4_window7_224] (main.py 95): INFO SwinTransformer( | |
| (patch_embed): PatchEmbed( | |
| (proj): Conv2d(3, 96, kernel_size=(4, 4), stride=(4, 4)) | |
| (norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True) | |
| ) | |
| (pos_drop): Dropout(p=0.0, inplace=False) | |
| (layers): ModuleList( | |
| (0): BasicLayer( | |
| dim=96, input_resolution=(56, 56), depth=2 | |
| (blocks): ModuleList( | |
| (0): SwinTransformerBlock( | |
| dim=96, input_resolution=(56, 56), num_heads=3, window_size=7, shift_size=0, mlp_ratio=4.0 | |
| (norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=96, window_size=(7, 7), num_heads=3 | |
| (qkv): Linear(in_features=96, out_features=288, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=96, out_features=96, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): Identity() | |
| (norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=96, out_features=384, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=384, out_features=96, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| (1): SwinTransformerBlock( | |
| dim=96, input_resolution=(56, 56), num_heads=3, window_size=7, shift_size=3, mlp_ratio=4.0 | |
| (norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=96, window_size=(7, 7), num_heads=3 | |
| (qkv): Linear(in_features=96, out_features=288, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=96, out_features=96, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=96, out_features=384, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=384, out_features=96, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| ) | |
| (downsample): PatchMerging( | |
| input_resolution=(56, 56), dim=96 | |
| (reduction): Linear(in_features=384, out_features=192, bias=False) | |
| (norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| ) | |
| ) | |
| (1): BasicLayer( | |
| dim=192, input_resolution=(28, 28), depth=2 | |
| (blocks): ModuleList( | |
| (0): SwinTransformerBlock( | |
| dim=192, input_resolution=(28, 28), num_heads=6, window_size=7, shift_size=0, mlp_ratio=4.0 | |
| (norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=192, window_size=(7, 7), num_heads=6 | |
| (qkv): Linear(in_features=192, out_features=576, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=192, out_features=192, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=192, out_features=768, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=768, out_features=192, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| (1): SwinTransformerBlock( | |
| dim=192, input_resolution=(28, 28), num_heads=6, window_size=7, shift_size=3, mlp_ratio=4.0 | |
| (norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=192, window_size=(7, 7), num_heads=6 | |
| (qkv): Linear(in_features=192, out_features=576, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=192, out_features=192, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=192, out_features=768, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=768, out_features=192, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| ) | |
| (downsample): PatchMerging( | |
| input_resolution=(28, 28), dim=192 | |
| (reduction): Linear(in_features=768, out_features=384, bias=False) | |
| (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) | |
| ) | |
| ) | |
| (2): BasicLayer( | |
| dim=384, input_resolution=(14, 14), depth=6 | |
| (blocks): ModuleList( | |
| (0): SwinTransformerBlock( | |
| dim=384, input_resolution=(14, 14), num_heads=12, window_size=7, shift_size=0, mlp_ratio=4.0 | |
| (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=384, window_size=(7, 7), num_heads=12 | |
| (qkv): Linear(in_features=384, out_features=1152, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=384, out_features=384, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=384, out_features=1536, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=1536, out_features=384, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| (1): SwinTransformerBlock( | |
| dim=384, input_resolution=(14, 14), num_heads=12, window_size=7, shift_size=3, mlp_ratio=4.0 | |
| (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=384, window_size=(7, 7), num_heads=12 | |
| (qkv): Linear(in_features=384, out_features=1152, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=384, out_features=384, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=384, out_features=1536, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=1536, out_features=384, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| (2): SwinTransformerBlock( | |
| dim=384, input_resolution=(14, 14), num_heads=12, window_size=7, shift_size=0, mlp_ratio=4.0 | |
| (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=384, window_size=(7, 7), num_heads=12 | |
| (qkv): Linear(in_features=384, out_features=1152, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=384, out_features=384, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=384, out_features=1536, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=1536, out_features=384, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| (3): SwinTransformerBlock( | |
| dim=384, input_resolution=(14, 14), num_heads=12, window_size=7, shift_size=3, mlp_ratio=4.0 | |
| (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=384, window_size=(7, 7), num_heads=12 | |
| (qkv): Linear(in_features=384, out_features=1152, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=384, out_features=384, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=384, out_features=1536, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=1536, out_features=384, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| (4): SwinTransformerBlock( | |
| dim=384, input_resolution=(14, 14), num_heads=12, window_size=7, shift_size=0, mlp_ratio=4.0 | |
| (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=384, window_size=(7, 7), num_heads=12 | |
| (qkv): Linear(in_features=384, out_features=1152, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=384, out_features=384, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=384, out_features=1536, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=1536, out_features=384, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| (5): SwinTransformerBlock( | |
| dim=384, input_resolution=(14, 14), num_heads=12, window_size=7, shift_size=3, mlp_ratio=4.0 | |
| (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=384, window_size=(7, 7), num_heads=12 | |
| (qkv): Linear(in_features=384, out_features=1152, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=384, out_features=384, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=384, out_features=1536, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=1536, out_features=384, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| ) | |
| (downsample): PatchMerging( | |
| input_resolution=(14, 14), dim=384 | |
| (reduction): Linear(in_features=1536, out_features=768, bias=False) | |
| (norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True) | |
| ) | |
| ) | |
| (3): BasicLayer( | |
| dim=768, input_resolution=(7, 7), depth=2 | |
| (blocks): ModuleList( | |
| (0-1): 2 x SwinTransformerBlock( | |
| dim=768, input_resolution=(7, 7), num_heads=24, window_size=7, shift_size=0, mlp_ratio=4.0 | |
| (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True) | |
| (attn): WindowAttention( | |
| dim=768, window_size=(7, 7), num_heads=24 | |
| (qkv): Linear(in_features=768, out_features=2304, bias=True) | |
| (attn_drop): Dropout(p=0.0, inplace=False) | |
| (proj): Linear(in_features=768, out_features=768, bias=True) | |
| (proj_drop): Dropout(p=0.0, inplace=False) | |
| (softmax): Softmax(dim=-1) | |
| ) | |
| (drop_path): DropPath() | |
| (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True) | |
| (mlp): Mlp( | |
| (fc1): Linear(in_features=768, out_features=3072, bias=True) | |
| (act): GELU(approximate='none') | |
| (fc2): Linear(in_features=3072, out_features=768, bias=True) | |
| (drop): Dropout(p=0.0, inplace=False) | |
| ) | |
| ) | |
| ) | |
| ) | |
| ) | |
| (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) | |
| (avgpool): AdaptiveAvgPool1d(output_size=1) | |
| (head): Linear(in_features=768, out_features=1000, bias=True) | |
| ) | |
| [2025-12-08 16:16:36 swin_tiny_patch4_window7_224] (main.py 98): INFO number of params: 28288354 | |
| [2025-12-08 16:16:36 swin_tiny_patch4_window7_224] (main.py 101): INFO number of GFLOPs: 4.49440512 | |
| [2025-12-08 16:16:36 swin_tiny_patch4_window7_224] (main.py 135): INFO no checkpoint found in output/swin_tiny_patch4_window7_224/default, ignoring auto resume | |
| [2025-12-08 16:16:36 swin_tiny_patch4_window7_224] (utils.py 46): INFO ==============> Loading weight /content/Swin-Transformer/pretrained_weights/swin_tiny_patch4_window7_224.pth for fine-tuning...... | |
| [2025-12-08 16:16:36 swin_tiny_patch4_window7_224] (utils.py 127): WARNING _IncompatibleKeys(missing_keys=['layers.0.blocks.0.attn.relative_position_index', 'layers.0.blocks.1.attn_mask', 'layers.0.blocks.1.attn.relative_position_index', 'layers.1.blocks.0.attn.relative_position_index', 'layers.1.blocks.1.attn_mask', 'layers.1.blocks.1.attn.relative_position_index', 'layers.2.blocks.0.attn.relative_position_index', 'layers.2.blocks.1.attn_mask', 'layers.2.blocks.1.attn.relative_position_index', 'layers.2.blocks.2.attn.relative_position_index', 'layers.2.blocks.3.attn_mask', 'layers.2.blocks.3.attn.relative_position_index', 'layers.2.blocks.4.attn.relative_position_index', 'layers.2.blocks.5.attn_mask', 'layers.2.blocks.5.attn.relative_position_index', 'layers.3.blocks.0.attn.relative_position_index', 'layers.3.blocks.1.attn.relative_position_index'], unexpected_keys=[]) | |
| [2025-12-08 16:16:36 swin_tiny_patch4_window7_224] (utils.py 129): INFO => loaded successfully '/content/Swin-Transformer/pretrained_weights/swin_tiny_patch4_window7_224.pth' | |
| [2025-12-08 16:16:44 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 8.141 (8.141) Loss 9.8047 (9.8047) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:16:50 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 2.495 (1.213) Loss 9.0547 (10.1612) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:16:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.511 (0.968) Loss 9.3438 (9.7891) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:17:04 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.038 (0.880) Loss 8.9219 (9.5595) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:17:19 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.050 (1.049) Loss 9.8047 (9.5596) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:17:26 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.032 (0.979) Loss 9.3594 (9.5455) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:17:38 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 6.048 (1.017) Loss 9.9922 (9.5479) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:17:46 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.050 (0.976) Loss 9.6641 (9.5157) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:17:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.048 (0.947) Loss 9.5625 (9.5231) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:17:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.033 (0.908) Loss 9.0859 (9.5055) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:18:11 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 5.920 (0.936) Loss 8.4844 (9.4666) Acc@1 0.000 (0.000) Acc@5 0.000 (0.000) Mem 426MB | |
| [2025-12-08 16:18:17 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 0.000 Acc@5 0.000 | |
| [2025-12-08 16:18:17 swin_tiny_patch4_window7_224] (main.py 147): INFO Accuracy of the network on the 1760 test images: 0.0% | |
| [2025-12-08 16:18:17 swin_tiny_patch4_window7_224] (main.py 153): INFO Start training | |
| [2025-12-08 16:18:24 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][0/256] eta 0:31:23 lr 0.000000 wd 0.0500 time 7.3586 (7.3586) loss 4.3156 (4.3156) grad_norm 0.0000 (0.0000) loss_scale 65536.0000 (65536.0000) mem 695MB | |
| [2025-12-08 16:18:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][10/256] eta 0:05:07 lr 0.000000 wd 0.0500 time 0.1247 (1.2482) loss 4.4504 (4.2248) grad_norm 26.0064 (nan) loss_scale 16384.0000 (26810.1818) mem 921MB | |
| [2025-12-08 16:18:37 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][20/256] eta 0:03:44 lr 0.000001 wd 0.0500 time 0.1233 (0.9518) loss 4.3685 (4.2801) grad_norm 33.3361 (nan) loss_scale 16384.0000 (21845.3333) mem 921MB | |
| [2025-12-08 16:18:44 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][30/256] eta 0:03:15 lr 0.000001 wd 0.0500 time 0.1286 (0.8653) loss 4.3437 (4.2972) grad_norm 31.1871 (nan) loss_scale 16384.0000 (20083.6129) mem 921MB | |
| [2025-12-08 16:18:55 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][40/256] eta 0:03:18 lr 0.000002 wd 0.0500 time 4.0587 (0.9194) loss 4.2975 (4.2785) grad_norm 30.4545 (nan) loss_scale 16384.0000 (19181.2683) mem 921MB | |
| [2025-12-08 16:19:02 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][50/256] eta 0:03:03 lr 0.000002 wd 0.0500 time 0.1274 (0.8894) loss 3.9294 (4.2533) grad_norm 26.2191 (nan) loss_scale 16384.0000 (18632.7843) mem 921MB | |
| [2025-12-08 16:19:09 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][60/256] eta 0:02:46 lr 0.000002 wd 0.0500 time 0.1385 (0.8473) loss 3.9494 (4.2275) grad_norm 28.6338 (nan) loss_scale 16384.0000 (18264.1311) mem 921MB | |
| [2025-12-08 16:19:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][70/256] eta 0:02:30 lr 0.000003 wd 0.0500 time 0.1253 (0.8114) loss 4.0818 (4.1921) grad_norm 29.5244 (nan) loss_scale 16384.0000 (17999.3239) mem 921MB | |
| [2025-12-08 16:19:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][80/256] eta 0:02:51 lr 0.000003 wd 0.0500 time 14.7946 (0.9743) loss 3.7849 (4.1402) grad_norm 26.0718 (nan) loss_scale 16384.0000 (17799.9012) mem 921MB | |
| [2025-12-08 16:19:44 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][90/256] eta 0:02:39 lr 0.000004 wd 0.0500 time 0.1256 (0.9598) loss 3.5666 (4.0836) grad_norm inf (nan) loss_scale 8192.0000 (17464.2637) mem 921MB | |
| [2025-12-08 16:19:51 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][100/256] eta 0:02:25 lr 0.000004 wd 0.0500 time 0.1238 (0.9307) loss 2.9667 (4.0115) grad_norm 33.9108 (nan) loss_scale 8192.0000 (16546.2178) mem 921MB | |
| [2025-12-08 16:19:58 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][110/256] eta 0:02:12 lr 0.000004 wd 0.0500 time 0.1292 (0.9093) loss 2.9654 (3.9390) grad_norm 40.0141 (nan) loss_scale 8192.0000 (15793.5856) mem 921MB | |
| [2025-12-08 16:20:10 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][120/256] eta 0:02:07 lr 0.000005 wd 0.0500 time 5.6335 (0.9374) loss 3.0443 (3.8617) grad_norm 38.7037 (nan) loss_scale 8192.0000 (15165.3554) mem 921MB | |
| [2025-12-08 16:20:16 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][130/256] eta 0:01:54 lr 0.000005 wd 0.0500 time 0.1265 (0.9104) loss 2.4747 (3.7722) grad_norm 39.0961 (nan) loss_scale 8192.0000 (14633.0382) mem 921MB | |
| [2025-12-08 16:20:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][140/256] eta 0:01:43 lr 0.000006 wd 0.0500 time 0.1270 (0.8916) loss 2.0418 (3.6738) grad_norm inf (nan) loss_scale 4096.0000 (14118.1277) mem 921MB | |
| [2025-12-08 16:20:29 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][150/256] eta 0:01:32 lr 0.000006 wd 0.0500 time 0.1263 (0.8744) loss 2.0707 (3.5728) grad_norm 31.9776 (nan) loss_scale 4096.0000 (13454.4106) mem 921MB | |
| [2025-12-08 16:20:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][160/256] eta 0:01:24 lr 0.000006 wd 0.0500 time 4.0250 (0.8852) loss 2.1233 (3.4721) grad_norm 23.6168 (nan) loss_scale 4096.0000 (12873.1429) mem 921MB | |
| [2025-12-08 16:20:46 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][170/256] eta 0:01:14 lr 0.000007 wd 0.0500 time 0.1288 (0.8716) loss 1.8874 (3.3704) grad_norm 26.8260 (nan) loss_scale 4096.0000 (12359.8596) mem 921MB | |
| [2025-12-08 16:20:53 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][180/256] eta 0:01:05 lr 0.000007 wd 0.0500 time 0.1279 (0.8616) loss 1.5643 (3.2755) grad_norm 21.5001 (nan) loss_scale 4096.0000 (11903.2928) mem 921MB | |
| [2025-12-08 16:21:01 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][190/256] eta 0:00:56 lr 0.000008 wd 0.0500 time 0.1351 (0.8577) loss 1.3834 (3.1812) grad_norm 26.4004 (nan) loss_scale 4096.0000 (11494.5340) mem 921MB | |
| [2025-12-08 16:21:10 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][200/256] eta 0:00:48 lr 0.000008 wd 0.0500 time 2.6927 (0.8613) loss 1.3477 (3.0889) grad_norm 37.5644 (nan) loss_scale 4096.0000 (11126.4478) mem 921MB | |
| [2025-12-08 16:21:16 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][210/256] eta 0:00:39 lr 0.000008 wd 0.0500 time 0.1283 (0.8504) loss 1.5003 (3.0035) grad_norm 23.1965 (nan) loss_scale 4096.0000 (10793.2512) mem 921MB | |
| [2025-12-08 16:21:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][220/256] eta 0:00:30 lr 0.000009 wd 0.0500 time 0.1510 (0.8597) loss 1.4713 (2.9287) grad_norm 28.6159 (nan) loss_scale 4096.0000 (10490.2081) mem 921MB | |
| [2025-12-08 16:21:33 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][230/256] eta 0:00:22 lr 0.000009 wd 0.0500 time 0.1479 (0.8502) loss 1.1351 (2.8586) grad_norm 20.6478 (nan) loss_scale 4096.0000 (10213.4026) mem 921MB | |
| [2025-12-08 16:21:40 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][240/256] eta 0:00:13 lr 0.000010 wd 0.0500 time 1.3613 (0.8430) loss 1.1721 (2.7905) grad_norm 23.8414 (nan) loss_scale 4096.0000 (9959.5685) mem 921MB | |
| [2025-12-08 16:21:46 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [0/15][250/256] eta 0:00:05 lr 0.000010 wd 0.0500 time 0.1304 (0.8338) loss 1.0151 (2.7239) grad_norm 14.7991 (nan) loss_scale 4096.0000 (9725.9602) mem 921MB | |
| [2025-12-08 16:21:52 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 0 training takes 0:03:34 | |
| [2025-12-08 16:21:52 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_0.pth saving...... | |
| [2025-12-08 16:21:52 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_0.pth saved !!! | |
| [2025-12-08 16:21:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 2.865 (2.865) Loss 1.0010 (1.0010) Acc@1 87.500 (87.500) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:21:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.109 (0.323) Loss 0.6465 (0.9789) Acc@1 87.500 (76.705) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:21:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.035 (0.203) Loss 1.0342 (1.2305) Acc@1 62.500 (66.071) Acc@5 100.000 (97.619) Mem 921MB | |
| [2025-12-08 16:21:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.038 (0.163) Loss 2.8555 (1.2320) Acc@1 12.500 (66.734) Acc@5 93.750 (98.185) Mem 921MB | |
| [2025-12-08 16:21:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.127 (0.146) Loss 0.5859 (1.1318) Acc@1 81.250 (68.902) Acc@5 100.000 (98.628) Mem 921MB | |
| [2025-12-08 16:22:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.099 (0.143) Loss 1.1348 (1.1021) Acc@1 50.000 (69.363) Acc@5 100.000 (98.897) Mem 921MB | |
| [2025-12-08 16:22:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.055 (0.137) Loss 0.6143 (1.0382) Acc@1 93.750 (72.746) Acc@5 100.000 (99.078) Mem 921MB | |
| [2025-12-08 16:22:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.110 (0.134) Loss 0.6538 (0.9915) Acc@1 93.750 (74.208) Acc@5 100.000 (99.208) Mem 921MB | |
| [2025-12-08 16:22:03 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.047 (0.132) Loss 1.2695 (0.9400) Acc@1 81.250 (76.620) Acc@5 100.000 (99.306) Mem 921MB | |
| [2025-12-08 16:22:04 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.079 (0.127) Loss 0.2128 (0.9305) Acc@1 100.000 (76.992) Acc@5 100.000 (99.382) Mem 921MB | |
| [2025-12-08 16:22:05 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.048 (0.122) Loss 0.5830 (0.9425) Acc@1 81.250 (74.381) Acc@5 100.000 (99.443) Mem 921MB | |
| [2025-12-08 16:22:05 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 75.625 Acc@5 99.489 | |
| [2025-12-08 16:22:05 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 75.6% | |
| [2025-12-08 16:22:05 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 75.62% | |
| [2025-12-08 16:22:07 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][0/256] eta 0:05:29 lr 0.000010 wd 0.0500 time 1.2878 (1.2878) loss 1.0676 (1.0676) grad_norm 0.0000 (0.0000) loss_scale 4096.0000 (4096.0000) mem 921MB | |
| [2025-12-08 16:22:09 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][10/256] eta 0:01:18 lr 0.000011 wd 0.0500 time 0.1810 (0.3198) loss 1.1136 (1.1374) grad_norm 22.2228 (22.9132) loss_scale 4096.0000 (4096.0000) mem 921MB | |
| [2025-12-08 16:22:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][20/256] eta 0:01:01 lr 0.000011 wd 0.0500 time 0.2653 (0.2614) loss 0.9679 (1.1324) grad_norm 19.9265 (21.3481) loss_scale 4096.0000 (4096.0000) mem 921MB | |
| [2025-12-08 16:22:12 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][30/256] eta 0:00:51 lr 0.000012 wd 0.0500 time 0.1346 (0.2271) loss 1.0758 (1.1046) grad_norm 15.7693 (20.4390) loss_scale 4096.0000 (4096.0000) mem 921MB | |
| [2025-12-08 16:22:14 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][40/256] eta 0:00:47 lr 0.000012 wd 0.0500 time 0.2473 (0.2217) loss 1.0190 (1.0791) grad_norm 16.5814 (inf) loss_scale 2048.0000 (3596.4878) mem 921MB | |
| [2025-12-08 16:22:17 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][50/256] eta 0:00:46 lr 0.000012 wd 0.0500 time 0.2555 (0.2253) loss 1.2187 (1.0659) grad_norm 29.2766 (inf) loss_scale 2048.0000 (3292.8627) mem 921MB | |
| [2025-12-08 16:22:19 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][60/256] eta 0:00:42 lr 0.000013 wd 0.0500 time 0.1482 (0.2177) loss 1.1547 (1.0616) grad_norm 14.4174 (inf) loss_scale 2048.0000 (3088.7869) mem 921MB | |
| [2025-12-08 16:22:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][70/256] eta 0:00:38 lr 0.000013 wd 0.0500 time 0.1405 (0.2096) loss 0.9871 (1.0649) grad_norm 22.9458 (inf) loss_scale 2048.0000 (2942.1972) mem 921MB | |
| [2025-12-08 16:22:22 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][80/256] eta 0:00:35 lr 0.000014 wd 0.0500 time 0.1443 (0.2029) loss 0.9865 (1.0548) grad_norm 15.6917 (inf) loss_scale 2048.0000 (2831.8025) mem 921MB | |
| [2025-12-08 16:22:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][90/256] eta 0:00:32 lr 0.000014 wd 0.0500 time 0.1412 (0.1974) loss 0.7782 (1.0471) grad_norm 22.5886 (inf) loss_scale 2048.0000 (2745.6703) mem 921MB | |
| [2025-12-08 16:22:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][100/256] eta 0:00:30 lr 0.000014 wd 0.0500 time 0.1422 (0.1939) loss 0.8515 (1.0393) grad_norm 11.4153 (inf) loss_scale 2048.0000 (2676.5941) mem 921MB | |
| [2025-12-08 16:22:26 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][110/256] eta 0:00:27 lr 0.000015 wd 0.0500 time 0.1385 (0.1907) loss 0.9883 (1.0325) grad_norm 11.6474 (inf) loss_scale 2048.0000 (2619.9640) mem 921MB | |
| [2025-12-08 16:22:28 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][120/256] eta 0:00:25 lr 0.000015 wd 0.0500 time 0.2262 (0.1908) loss 1.1074 (1.0301) grad_norm 13.8704 (inf) loss_scale 2048.0000 (2572.6942) mem 921MB | |
| [2025-12-08 16:22:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][130/256] eta 0:00:24 lr 0.000016 wd 0.0500 time 0.2580 (0.1955) loss 1.1132 (1.0293) grad_norm 21.1344 (inf) loss_scale 2048.0000 (2532.6412) mem 921MB | |
| [2025-12-08 16:22:33 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][140/256] eta 0:00:22 lr 0.000016 wd 0.0500 time 0.1395 (0.1952) loss 0.9727 (1.0231) grad_norm 8.9138 (inf) loss_scale 2048.0000 (2498.2695) mem 921MB | |
| [2025-12-08 16:22:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][150/256] eta 0:00:20 lr 0.000016 wd 0.0500 time 0.1394 (0.1928) loss 0.9671 (1.0189) grad_norm 24.9671 (inf) loss_scale 2048.0000 (2468.4503) mem 921MB | |
| [2025-12-08 16:22:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][160/256] eta 0:00:18 lr 0.000017 wd 0.0500 time 0.1376 (0.1909) loss 0.7812 (1.0136) grad_norm 12.4752 (inf) loss_scale 2048.0000 (2442.3354) mem 921MB | |
| [2025-12-08 16:22:38 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][170/256] eta 0:00:16 lr 0.000017 wd 0.0500 time 0.1420 (0.1892) loss 0.9778 (1.0144) grad_norm 23.9211 (inf) loss_scale 2048.0000 (2419.2749) mem 921MB | |
| [2025-12-08 16:22:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][180/256] eta 0:00:14 lr 0.000018 wd 0.0500 time 0.1419 (0.1875) loss 1.0092 (1.0096) grad_norm 14.2538 (inf) loss_scale 2048.0000 (2398.7624) mem 921MB | |
| [2025-12-08 16:22:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][190/256] eta 0:00:12 lr 0.000018 wd 0.0500 time 0.1650 (0.1862) loss 0.7262 (1.0039) grad_norm 10.2509 (inf) loss_scale 2048.0000 (2380.3979) mem 921MB | |
| [2025-12-08 16:22:43 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][200/256] eta 0:00:10 lr 0.000018 wd 0.0500 time 0.1625 (0.1856) loss 0.7198 (0.9956) grad_norm 9.9701 (inf) loss_scale 2048.0000 (2363.8607) mem 921MB | |
| [2025-12-08 16:22:45 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][210/256] eta 0:00:08 lr 0.000019 wd 0.0500 time 0.2463 (0.1886) loss 0.7895 (0.9900) grad_norm 8.7118 (inf) loss_scale 2048.0000 (2348.8910) mem 921MB | |
| [2025-12-08 16:22:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][220/256] eta 0:00:06 lr 0.000019 wd 0.0500 time 0.1506 (0.1887) loss 1.0708 (0.9847) grad_norm 6.9734 (inf) loss_scale 2048.0000 (2335.2760) mem 921MB | |
| [2025-12-08 16:22:48 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][230/256] eta 0:00:04 lr 0.000020 wd 0.0500 time 0.1468 (0.1871) loss 0.9686 (0.9816) grad_norm 10.6456 (inf) loss_scale 2048.0000 (2322.8398) mem 921MB | |
| [2025-12-08 16:22:50 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][240/256] eta 0:00:02 lr 0.000020 wd 0.0500 time 0.1351 (0.1856) loss 0.7823 (0.9772) grad_norm 20.1823 (inf) loss_scale 2048.0000 (2311.4357) mem 921MB | |
| [2025-12-08 16:22:51 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [1/15][250/256] eta 0:00:01 lr 0.000021 wd 0.0500 time 0.1308 (0.1837) loss 1.0312 (0.9734) grad_norm 9.2289 (inf) loss_scale 2048.0000 (2300.9402) mem 921MB | |
| [2025-12-08 16:22:52 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 1 training takes 0:00:46 | |
| [2025-12-08 16:22:52 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_1.pth saving...... | |
| [2025-12-08 16:22:53 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_1.pth saved !!! | |
| [2025-12-08 16:22:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.534 (1.534) Loss 0.0524 (0.0524) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:22:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.066 (0.204) Loss 0.2081 (0.0713) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:22:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.048 (0.139) Loss 0.2686 (0.2864) Acc@1 100.000 (95.536) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:22:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.037 (0.121) Loss 0.1744 (0.2930) Acc@1 100.000 (93.750) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:22:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.184 (0.133) Loss 0.1865 (0.3332) Acc@1 100.000 (91.768) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:22:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.133 (0.129) Loss 0.4202 (0.3335) Acc@1 100.000 (93.382) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.045 (0.126) Loss 0.2434 (0.3278) Acc@1 100.000 (94.467) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.049 (0.118) Loss 0.2007 (0.3102) Acc@1 100.000 (95.070) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.200 (0.115) Loss 0.1945 (0.2872) Acc@1 100.000 (95.679) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:03 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.088 (0.111) Loss 0.0866 (0.2673) Acc@1 100.000 (96.154) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:04 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.067 (0.107) Loss 0.1549 (0.2692) Acc@1 100.000 (96.411) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:04 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 96.705 Acc@5 100.000 | |
| [2025-12-08 16:23:04 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 96.7% | |
| [2025-12-08 16:23:04 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 96.70% | |
| [2025-12-08 16:23:05 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][0/256] eta 0:05:19 lr 0.000021 wd 0.0500 time 1.2498 (1.2498) loss 0.9957 (0.9957) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:08 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][10/256] eta 0:01:18 lr 0.000021 wd 0.0500 time 0.1782 (0.3200) loss 0.9628 (0.8816) grad_norm 7.1425 (10.9805) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:09 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][20/256] eta 0:00:58 lr 0.000022 wd 0.0500 time 0.1333 (0.2475) loss 0.9385 (0.8766) grad_norm 9.6037 (10.9551) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][30/256] eta 0:00:50 lr 0.000022 wd 0.0500 time 0.3078 (0.2244) loss 0.9667 (0.8817) grad_norm 6.8127 (10.9777) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:14 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][40/256] eta 0:00:50 lr 0.000022 wd 0.0500 time 0.2312 (0.2319) loss 1.1136 (0.8907) grad_norm 9.5558 (10.8312) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:16 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][50/256] eta 0:00:46 lr 0.000023 wd 0.0500 time 0.1554 (0.2262) loss 0.7757 (0.8893) grad_norm 7.7459 (10.6998) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:17 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][60/256] eta 0:00:42 lr 0.000023 wd 0.0500 time 0.1547 (0.2152) loss 0.8418 (0.8884) grad_norm 9.2021 (11.0715) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:19 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][70/256] eta 0:00:38 lr 0.000024 wd 0.0500 time 0.1591 (0.2067) loss 0.9457 (0.8882) grad_norm 12.2236 (10.9613) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][80/256] eta 0:00:35 lr 0.000024 wd 0.0500 time 0.1319 (0.2008) loss 0.7299 (0.8854) grad_norm 16.1698 (10.9293) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:22 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][90/256] eta 0:00:32 lr 0.000024 wd 0.0500 time 0.1429 (0.1953) loss 0.6606 (0.8787) grad_norm 8.3588 (10.6541) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:24 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][100/256] eta 0:00:29 lr 0.000025 wd 0.0500 time 0.1332 (0.1914) loss 0.9613 (0.8798) grad_norm 10.5426 (10.5905) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][110/256] eta 0:00:27 lr 0.000025 wd 0.0500 time 0.1451 (0.1876) loss 0.9109 (0.8818) grad_norm 6.4798 (10.3049) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][120/256] eta 0:00:26 lr 0.000026 wd 0.0500 time 0.3378 (0.1925) loss 0.8275 (0.8778) grad_norm 6.1542 (10.1197) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:30 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][130/256] eta 0:00:24 lr 0.000026 wd 0.0500 time 0.1710 (0.1957) loss 0.9310 (0.8721) grad_norm 8.8601 (9.9562) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][140/256] eta 0:00:22 lr 0.000026 wd 0.0500 time 0.1567 (0.1926) loss 0.8625 (0.8699) grad_norm 8.7674 (10.0826) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:33 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][150/256] eta 0:00:20 lr 0.000027 wd 0.0500 time 0.1467 (0.1902) loss 0.7005 (0.8635) grad_norm 22.5902 (10.1523) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][160/256] eta 0:00:18 lr 0.000027 wd 0.0500 time 0.1327 (0.1882) loss 0.9053 (0.8632) grad_norm 8.0826 (9.9724) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][170/256] eta 0:00:16 lr 0.000028 wd 0.0500 time 0.1640 (0.1865) loss 0.7058 (0.8642) grad_norm 11.2763 (10.0654) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:38 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][180/256] eta 0:00:14 lr 0.000028 wd 0.0500 time 0.1391 (0.1853) loss 1.0046 (0.8625) grad_norm 8.2009 (10.0139) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][190/256] eta 0:00:12 lr 0.000028 wd 0.0500 time 0.1497 (0.1838) loss 0.8600 (0.8575) grad_norm 14.5035 (10.0326) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:42 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][200/256] eta 0:00:10 lr 0.000029 wd 0.0500 time 0.2177 (0.1857) loss 0.7974 (0.8543) grad_norm 37.2289 (10.2045) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:44 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][210/256] eta 0:00:08 lr 0.000029 wd 0.0500 time 0.1482 (0.1895) loss 0.7676 (0.8512) grad_norm 6.4352 (10.1807) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:46 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][220/256] eta 0:00:06 lr 0.000030 wd 0.0500 time 0.1435 (0.1879) loss 0.8288 (0.8510) grad_norm 6.9031 (10.0615) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][230/256] eta 0:00:04 lr 0.000030 wd 0.0500 time 0.1479 (0.1865) loss 0.8576 (0.8529) grad_norm 7.5688 (9.9845) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:49 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][240/256] eta 0:00:02 lr 0.000031 wd 0.0500 time 0.1311 (0.1853) loss 0.6294 (0.8507) grad_norm 7.8154 (9.9238) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:50 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [2/15][250/256] eta 0:00:01 lr 0.000031 wd 0.0500 time 0.1348 (0.1835) loss 0.8328 (0.8515) grad_norm 11.5288 (9.9968) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:23:51 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 2 training takes 0:00:46 | |
| [2025-12-08 16:23:51 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_2.pth saving...... | |
| [2025-12-08 16:23:52 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_2.pth saved !!! | |
| [2025-12-08 16:23:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.213 (1.213) Loss 0.1100 (0.1100) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.053 (0.177) Loss 0.1223 (0.1153) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.042 (0.137) Loss 0.1641 (0.1384) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.052 (0.132) Loss 0.0850 (0.1348) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.112 (0.133) Loss 0.1409 (0.1407) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.090 (0.133) Loss 0.1776 (0.1428) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:23:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.077 (0.124) Loss 0.1588 (0.1464) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.040 (0.116) Loss 0.1434 (0.1419) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.167 (0.115) Loss 0.1665 (0.1429) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.036 (0.109) Loss 0.1190 (0.1429) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.073 (0.106) Loss 0.1306 (0.1442) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:03 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:24:03 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:24:03 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:24:04 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][0/256] eta 0:06:05 lr 0.000031 wd 0.0500 time 1.4265 (1.4265) loss 0.7532 (0.7532) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:07 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][10/256] eta 0:01:21 lr 0.000031 wd 0.0500 time 0.1838 (0.3330) loss 0.6693 (0.8249) grad_norm 10.6308 (12.0621) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:08 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][20/256] eta 0:01:00 lr 0.000031 wd 0.0500 time 0.1455 (0.2560) loss 0.8135 (0.8230) grad_norm 11.6380 (10.4814) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][30/256] eta 0:00:55 lr 0.000031 wd 0.0500 time 0.3185 (0.2476) loss 0.8258 (0.8224) grad_norm 5.8515 (9.8449) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:13 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][40/256] eta 0:00:54 lr 0.000031 wd 0.0500 time 0.2266 (0.2518) loss 0.5776 (0.7955) grad_norm 7.3597 (9.3166) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][50/256] eta 0:00:48 lr 0.000031 wd 0.0500 time 0.1375 (0.2345) loss 0.9185 (0.8033) grad_norm 5.1148 (9.1216) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:16 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][60/256] eta 0:00:43 lr 0.000031 wd 0.0500 time 0.1422 (0.2208) loss 0.7834 (0.7982) grad_norm 9.2445 (9.0716) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:18 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][70/256] eta 0:00:39 lr 0.000031 wd 0.0500 time 0.1630 (0.2128) loss 0.9262 (0.8014) grad_norm 9.0620 (9.0799) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][80/256] eta 0:00:36 lr 0.000031 wd 0.0500 time 0.1451 (0.2067) loss 0.8117 (0.7975) grad_norm 5.6181 (8.9801) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:21 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][90/256] eta 0:00:33 lr 0.000031 wd 0.0500 time 0.1510 (0.2011) loss 0.9820 (0.8061) grad_norm 6.6876 (8.8203) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][100/256] eta 0:00:30 lr 0.000031 wd 0.0500 time 0.1440 (0.1964) loss 0.7384 (0.8120) grad_norm 10.1008 (8.9033) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][110/256] eta 0:00:28 lr 0.000031 wd 0.0500 time 0.1363 (0.1973) loss 0.7072 (0.8115) grad_norm 7.5310 (8.9451) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][120/256] eta 0:00:27 lr 0.000031 wd 0.0500 time 0.2565 (0.2010) loss 0.9690 (0.8107) grad_norm 5.6539 (8.8396) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:29 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][130/256] eta 0:00:25 lr 0.000031 wd 0.0500 time 0.1458 (0.1992) loss 0.6411 (0.8059) grad_norm 10.2322 (8.7335) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][140/256] eta 0:00:22 lr 0.000031 wd 0.0500 time 0.1397 (0.1960) loss 0.9288 (0.8087) grad_norm 4.9849 (8.5720) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:32 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][150/256] eta 0:00:20 lr 0.000031 wd 0.0500 time 0.1443 (0.1932) loss 0.8232 (0.8071) grad_norm 4.2739 (8.4073) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][160/256] eta 0:00:18 lr 0.000031 wd 0.0500 time 0.1516 (0.1911) loss 0.9264 (0.8103) grad_norm 6.4459 (8.2648) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:35 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][170/256] eta 0:00:16 lr 0.000031 wd 0.0500 time 0.1461 (0.1890) loss 0.9381 (0.8090) grad_norm 5.5298 (8.3078) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:37 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][180/256] eta 0:00:14 lr 0.000031 wd 0.0500 time 0.1385 (0.1872) loss 0.5937 (0.8056) grad_norm 5.6355 (8.2062) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][190/256] eta 0:00:12 lr 0.000031 wd 0.0500 time 0.2391 (0.1876) loss 0.6094 (0.8025) grad_norm 7.8328 (8.1088) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][200/256] eta 0:00:10 lr 0.000031 wd 0.0500 time 0.1888 (0.1912) loss 0.7243 (0.8045) grad_norm 8.9012 (8.1219) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:43 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][210/256] eta 0:00:08 lr 0.000031 wd 0.0500 time 0.1678 (0.1905) loss 0.7407 (0.8025) grad_norm 4.3693 (8.0176) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:45 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][220/256] eta 0:00:06 lr 0.000031 wd 0.0500 time 0.1377 (0.1891) loss 0.9220 (0.8026) grad_norm 10.4994 (8.0207) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:46 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][230/256] eta 0:00:04 lr 0.000031 wd 0.0500 time 0.1470 (0.1875) loss 0.9671 (0.8030) grad_norm 6.6340 (8.0927) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:48 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][240/256] eta 0:00:02 lr 0.000031 wd 0.0500 time 0.1316 (0.1861) loss 0.8317 (0.8021) grad_norm 9.8353 (8.0835) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:49 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [3/15][250/256] eta 0:00:01 lr 0.000031 wd 0.0500 time 0.1354 (0.1843) loss 0.7658 (0.8019) grad_norm 3.6165 (8.0154) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:24:50 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 3 training takes 0:00:47 | |
| [2025-12-08 16:24:50 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_3.pth saving...... | |
| [2025-12-08 16:24:53 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_3.pth saved !!! | |
| [2025-12-08 16:24:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.318 (1.318) Loss 0.0782 (0.0782) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.095 (0.233) Loss 0.0575 (0.0677) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.057 (0.165) Loss 0.0933 (0.0878) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.035 (0.129) Loss 0.1735 (0.0912) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.302 (0.120) Loss 0.1156 (0.0975) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.032 (0.112) Loss 0.1313 (0.1019) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:24:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.033 (0.105) Loss 0.0926 (0.1046) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.040 (0.099) Loss 0.1270 (0.1080) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.126 (0.100) Loss 0.1504 (0.1118) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.046 (0.098) Loss 0.1383 (0.1148) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.035 (0.094) Loss 0.1327 (0.1165) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:03 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:25:03 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:25:03 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:25:04 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][0/256] eta 0:06:00 lr 0.000031 wd 0.0500 time 1.4090 (1.4090) loss 0.5955 (0.5955) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:07 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][10/256] eta 0:01:28 lr 0.000031 wd 0.0500 time 0.1711 (0.3609) loss 0.8487 (0.7392) grad_norm 7.3779 (4.8038) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:09 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][20/256] eta 0:01:12 lr 0.000031 wd 0.0500 time 0.2612 (0.3088) loss 0.7741 (0.7548) grad_norm 7.8066 (5.6577) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][30/256] eta 0:00:59 lr 0.000031 wd 0.0500 time 0.1398 (0.2625) loss 0.7522 (0.7751) grad_norm 5.9684 (6.2799) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:12 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][40/256] eta 0:00:50 lr 0.000031 wd 0.0500 time 0.1453 (0.2357) loss 0.9930 (0.7854) grad_norm 7.5976 (6.0100) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:14 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][50/256] eta 0:00:46 lr 0.000031 wd 0.0500 time 0.1375 (0.2234) loss 0.7545 (0.7754) grad_norm 4.3221 (5.9255) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:16 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][60/256] eta 0:00:41 lr 0.000030 wd 0.0500 time 0.1373 (0.2113) loss 0.6599 (0.7792) grad_norm 6.5189 (5.8544) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:17 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][70/256] eta 0:00:37 lr 0.000030 wd 0.0500 time 0.1346 (0.2028) loss 0.6953 (0.7779) grad_norm 13.6016 (6.2729) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:19 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][80/256] eta 0:00:34 lr 0.000030 wd 0.0500 time 0.1431 (0.1970) loss 0.8063 (0.7843) grad_norm 5.3645 (6.4490) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:21 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][90/256] eta 0:00:32 lr 0.000030 wd 0.0500 time 0.2651 (0.1958) loss 1.0345 (0.7861) grad_norm 6.3408 (6.3224) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][100/256] eta 0:00:31 lr 0.000030 wd 0.0500 time 0.2216 (0.2011) loss 0.9922 (0.7895) grad_norm 6.1603 (6.4480) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][110/256] eta 0:00:29 lr 0.000030 wd 0.0500 time 0.1391 (0.1997) loss 0.7551 (0.7883) grad_norm 4.4496 (6.3885) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][120/256] eta 0:00:26 lr 0.000030 wd 0.0500 time 0.1409 (0.1957) loss 0.8082 (0.7895) grad_norm 12.0345 (6.5633) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:28 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][130/256] eta 0:00:24 lr 0.000030 wd 0.0500 time 0.1464 (0.1924) loss 0.7863 (0.7882) grad_norm 8.4305 (6.5830) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:30 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][140/256] eta 0:00:22 lr 0.000030 wd 0.0500 time 0.1547 (0.1903) loss 0.8517 (0.7852) grad_norm 22.7844 (6.7981) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][150/256] eta 0:00:19 lr 0.000030 wd 0.0500 time 0.1531 (0.1885) loss 0.8475 (0.7907) grad_norm 7.7142 (6.8177) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:33 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][160/256] eta 0:00:17 lr 0.000030 wd 0.0500 time 0.1502 (0.1864) loss 0.7707 (0.7908) grad_norm 8.1299 (6.7645) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:35 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][170/256] eta 0:00:15 lr 0.000030 wd 0.0500 time 0.1970 (0.1856) loss 0.8253 (0.7890) grad_norm 7.3139 (6.7053) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:37 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][180/256] eta 0:00:14 lr 0.000030 wd 0.0500 time 0.1984 (0.1893) loss 0.6710 (0.7895) grad_norm 8.5386 (6.8088) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][190/256] eta 0:00:12 lr 0.000030 wd 0.0500 time 0.1498 (0.1896) loss 0.9398 (0.7892) grad_norm 4.4760 (6.7191) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][200/256] eta 0:00:10 lr 0.000030 wd 0.0500 time 0.1375 (0.1880) loss 0.8977 (0.7881) grad_norm 4.9378 (6.8141) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:42 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][210/256] eta 0:00:08 lr 0.000030 wd 0.0500 time 0.1554 (0.1864) loss 0.8788 (0.7869) grad_norm 9.1093 (6.8153) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:44 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][220/256] eta 0:00:06 lr 0.000029 wd 0.0500 time 0.1665 (0.1850) loss 0.7587 (0.7867) grad_norm 5.5663 (6.7944) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:45 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][230/256] eta 0:00:04 lr 0.000029 wd 0.0500 time 0.1350 (0.1838) loss 0.7371 (0.7840) grad_norm 5.5462 (6.7886) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][240/256] eta 0:00:02 lr 0.000029 wd 0.0500 time 0.1326 (0.1826) loss 1.0451 (0.7864) grad_norm 9.6837 (6.8639) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:48 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [4/15][250/256] eta 0:00:01 lr 0.000029 wd 0.0500 time 0.1389 (0.1809) loss 0.9244 (0.7867) grad_norm 6.6220 (6.9064) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:25:49 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 4 training takes 0:00:46 | |
| [2025-12-08 16:25:49 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_4.pth saving...... | |
| [2025-12-08 16:25:50 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_4.pth saved !!! | |
| [2025-12-08 16:25:52 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.341 (1.341) Loss 0.1205 (0.1205) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.041 (0.221) Loss 0.1138 (0.0981) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.074 (0.152) Loss 0.1219 (0.1117) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.044 (0.126) Loss 0.0678 (0.1068) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.059 (0.118) Loss 0.1343 (0.1125) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.072 (0.110) Loss 0.1265 (0.1140) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.039 (0.105) Loss 0.1176 (0.1157) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.029 (0.101) Loss 0.1387 (0.1197) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.069 (0.097) Loss 0.1270 (0.1204) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:25:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.039 (0.098) Loss 0.1120 (0.1212) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.037 (0.095) Loss 0.1093 (0.1201) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:00 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:26:00 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:26:00 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:26:02 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][0/256] eta 0:06:22 lr 0.000029 wd 0.0500 time 1.4943 (1.4943) loss 0.8072 (0.8072) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:05 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][10/256] eta 0:01:44 lr 0.000029 wd 0.0500 time 0.2486 (0.4228) loss 0.8558 (0.8391) grad_norm 5.4104 (6.8546) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:07 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][20/256] eta 0:01:19 lr 0.000029 wd 0.0500 time 0.1492 (0.3361) loss 0.8321 (0.8115) grad_norm 4.8415 (6.8705) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:09 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][30/256] eta 0:01:02 lr 0.000029 wd 0.0500 time 0.1414 (0.2787) loss 0.5603 (0.7862) grad_norm 6.3527 (6.9408) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][40/256] eta 0:00:54 lr 0.000029 wd 0.0500 time 0.1487 (0.2503) loss 0.5664 (0.7734) grad_norm 6.2474 (6.5782) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:12 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][50/256] eta 0:00:47 lr 0.000029 wd 0.0500 time 0.1378 (0.2318) loss 0.8546 (0.7836) grad_norm 5.4276 (6.6570) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:14 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][60/256] eta 0:00:43 lr 0.000029 wd 0.0500 time 0.1494 (0.2197) loss 0.9095 (0.7866) grad_norm 7.4483 (6.5612) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:16 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][70/256] eta 0:00:39 lr 0.000029 wd 0.0500 time 0.1624 (0.2144) loss 0.7399 (0.7824) grad_norm 6.1682 (6.4894) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:17 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][80/256] eta 0:00:36 lr 0.000029 wd 0.0500 time 0.2189 (0.2099) loss 0.7997 (0.7862) grad_norm 4.8407 (6.3563) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][90/256] eta 0:00:35 lr 0.000028 wd 0.0500 time 0.3070 (0.2149) loss 0.8759 (0.7874) grad_norm 6.6494 (6.2023) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:22 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][100/256] eta 0:00:33 lr 0.000028 wd 0.0500 time 0.1510 (0.2140) loss 0.8385 (0.7892) grad_norm 5.8821 (6.2349) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][110/256] eta 0:00:30 lr 0.000028 wd 0.0500 time 0.1621 (0.2090) loss 0.8430 (0.7888) grad_norm 6.3362 (6.1277) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][120/256] eta 0:00:27 lr 0.000028 wd 0.0500 time 0.1708 (0.2049) loss 0.7827 (0.7871) grad_norm 9.0008 (6.1901) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][130/256] eta 0:00:25 lr 0.000028 wd 0.0500 time 0.1476 (0.2017) loss 0.7688 (0.7898) grad_norm 9.4992 (6.3413) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:28 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][140/256] eta 0:00:23 lr 0.000028 wd 0.0500 time 0.1451 (0.1988) loss 0.7386 (0.7891) grad_norm 5.6367 (6.4103) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:30 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][150/256] eta 0:00:20 lr 0.000028 wd 0.0500 time 0.1377 (0.1962) loss 0.9369 (0.7898) grad_norm 5.3443 (6.3990) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:32 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][160/256] eta 0:00:18 lr 0.000028 wd 0.0500 time 0.2692 (0.1951) loss 0.6632 (0.7874) grad_norm 6.1040 (6.4356) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][170/256] eta 0:00:17 lr 0.000028 wd 0.0500 time 0.2423 (0.1988) loss 0.8765 (0.7866) grad_norm 2.6118 (6.3690) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][180/256] eta 0:00:15 lr 0.000028 wd 0.0500 time 0.1749 (0.1990) loss 0.9281 (0.7866) grad_norm 4.5129 (6.3787) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:38 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][190/256] eta 0:00:12 lr 0.000027 wd 0.0500 time 0.1459 (0.1966) loss 0.6021 (0.7854) grad_norm 4.7096 (6.4860) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][200/256] eta 0:00:10 lr 0.000027 wd 0.0500 time 0.1376 (0.1948) loss 0.7932 (0.7829) grad_norm 10.9294 (6.6325) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][210/256] eta 0:00:08 lr 0.000027 wd 0.0500 time 0.1521 (0.1929) loss 0.7218 (0.7782) grad_norm 5.7302 (6.5888) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:43 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][220/256] eta 0:00:06 lr 0.000027 wd 0.0500 time 0.1449 (0.1916) loss 0.6969 (0.7782) grad_norm 7.5702 (6.6128) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:44 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][230/256] eta 0:00:04 lr 0.000027 wd 0.0500 time 0.1584 (0.1902) loss 0.8657 (0.7788) grad_norm 19.1401 (6.6512) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:46 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][240/256] eta 0:00:03 lr 0.000027 wd 0.0500 time 0.1309 (0.1898) loss 0.8596 (0.7817) grad_norm 7.1591 (6.6963) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [5/15][250/256] eta 0:00:01 lr 0.000027 wd 0.0500 time 0.1313 (0.1879) loss 0.5840 (0.7792) grad_norm 15.8307 (6.7193) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:26:48 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 5 training takes 0:00:48 | |
| [2025-12-08 16:26:48 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_5.pth saving...... | |
| [2025-12-08 16:26:49 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_5.pth saved !!! | |
| [2025-12-08 16:26:51 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.364 (1.364) Loss 0.0694 (0.0694) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:51 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.098 (0.191) Loss 0.1600 (0.0750) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:52 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.049 (0.141) Loss 0.2118 (0.1241) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.041 (0.120) Loss 0.1975 (0.1329) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.114 (0.113) Loss 0.1370 (0.1338) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.244 (0.110) Loss 0.1149 (0.1338) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.043 (0.104) Loss 0.1085 (0.1332) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.067 (0.100) Loss 0.1190 (0.1333) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.136 (0.097) Loss 0.1208 (0.1317) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.208 (0.096) Loss 0.1220 (0.1310) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:26:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.055 (0.095) Loss 0.1289 (0.1297) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:00 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:27:00 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:27:00 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:27:02 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][0/256] eta 0:09:37 lr 0.000027 wd 0.0500 time 2.2564 (2.2564) loss 0.7617 (0.7617) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:05 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][10/256] eta 0:01:53 lr 0.000027 wd 0.0500 time 0.1901 (0.4600) loss 0.9595 (0.7408) grad_norm 10.3595 (7.0659) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:07 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][20/256] eta 0:01:16 lr 0.000027 wd 0.0500 time 0.1580 (0.3230) loss 0.7662 (0.7560) grad_norm 6.1357 (7.5485) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:08 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][30/256] eta 0:01:01 lr 0.000026 wd 0.0500 time 0.1580 (0.2710) loss 0.6708 (0.7343) grad_norm 3.4190 (6.6012) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:10 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][40/256] eta 0:00:52 lr 0.000026 wd 0.0500 time 0.1371 (0.2444) loss 0.6318 (0.7343) grad_norm 5.9765 (6.2279) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][50/256] eta 0:00:46 lr 0.000026 wd 0.0500 time 0.1415 (0.2281) loss 0.7354 (0.7416) grad_norm 6.8356 (6.1764) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:13 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][60/256] eta 0:00:42 lr 0.000026 wd 0.0500 time 0.1750 (0.2171) loss 0.8069 (0.7546) grad_norm 3.0412 (6.1787) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][70/256] eta 0:00:40 lr 0.000026 wd 0.0500 time 0.1974 (0.2154) loss 0.8400 (0.7637) grad_norm 4.4955 (6.0757) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:18 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][80/256] eta 0:00:39 lr 0.000026 wd 0.0500 time 0.2289 (0.2216) loss 0.7935 (0.7629) grad_norm 6.2086 (6.4730) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][90/256] eta 0:00:36 lr 0.000026 wd 0.0500 time 0.1444 (0.2188) loss 0.8321 (0.7665) grad_norm 8.3337 (6.3899) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:21 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][100/256] eta 0:00:33 lr 0.000026 wd 0.0500 time 0.1489 (0.2132) loss 0.7440 (0.7680) grad_norm 4.0640 (6.2293) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][110/256] eta 0:00:30 lr 0.000025 wd 0.0500 time 0.1442 (0.2083) loss 0.6930 (0.7599) grad_norm 3.4570 (6.1902) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][120/256] eta 0:00:27 lr 0.000025 wd 0.0500 time 0.1420 (0.2052) loss 0.8780 (0.7560) grad_norm 2.7747 (6.1225) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:26 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][130/256] eta 0:00:25 lr 0.000025 wd 0.0500 time 0.1669 (0.2018) loss 0.8440 (0.7527) grad_norm 4.4960 (6.0134) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:28 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][140/256] eta 0:00:23 lr 0.000025 wd 0.0500 time 0.1471 (0.1987) loss 0.6195 (0.7523) grad_norm 4.8492 (6.0533) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:30 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][150/256] eta 0:00:21 lr 0.000025 wd 0.0500 time 0.1980 (0.1992) loss 0.7937 (0.7543) grad_norm 5.6069 (5.9888) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:32 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][160/256] eta 0:00:19 lr 0.000025 wd 0.0500 time 0.2716 (0.2026) loss 0.7249 (0.7545) grad_norm 9.5109 (5.9885) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][170/256] eta 0:00:17 lr 0.000025 wd 0.0500 time 0.1470 (0.2019) loss 0.6618 (0.7543) grad_norm 4.2011 (5.9627) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][180/256] eta 0:00:15 lr 0.000025 wd 0.0500 time 0.1486 (0.2000) loss 0.7647 (0.7532) grad_norm 9.7489 (5.9024) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:38 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][190/256] eta 0:00:13 lr 0.000024 wd 0.0500 time 0.1620 (0.1980) loss 0.6412 (0.7526) grad_norm 7.6488 (5.9950) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][200/256] eta 0:00:10 lr 0.000024 wd 0.0500 time 0.1375 (0.1961) loss 0.7329 (0.7554) grad_norm 6.9311 (6.0053) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][210/256] eta 0:00:08 lr 0.000024 wd 0.0500 time 0.1498 (0.1945) loss 0.6696 (0.7562) grad_norm 10.7045 (6.0953) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:42 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][220/256] eta 0:00:06 lr 0.000024 wd 0.0500 time 0.1382 (0.1929) loss 0.7635 (0.7540) grad_norm 14.3932 (6.1541) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:44 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][230/256] eta 0:00:05 lr 0.000024 wd 0.0500 time 0.1903 (0.1935) loss 0.6858 (0.7563) grad_norm 4.0602 (6.1950) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][240/256] eta 0:00:03 lr 0.000024 wd 0.0500 time 0.1931 (0.1957) loss 0.8232 (0.7571) grad_norm 8.7195 (6.1682) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:48 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [6/15][250/256] eta 0:00:01 lr 0.000024 wd 0.0500 time 0.1318 (0.1937) loss 0.6421 (0.7558) grad_norm 4.9146 (6.2626) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:27:49 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 6 training takes 0:00:49 | |
| [2025-12-08 16:27:49 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_6.pth saving...... | |
| [2025-12-08 16:27:50 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_6.pth saved !!! | |
| [2025-12-08 16:27:51 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.194 (1.194) Loss 0.0848 (0.0848) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:52 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.055 (0.188) Loss 0.1383 (0.0883) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.081 (0.132) Loss 0.1487 (0.1129) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.049 (0.114) Loss 0.1193 (0.1191) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.327 (0.110) Loss 0.1383 (0.1263) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.030 (0.105) Loss 0.1300 (0.1275) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.048 (0.100) Loss 0.1407 (0.1304) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.062 (0.098) Loss 0.1290 (0.1340) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.397 (0.099) Loss 0.1493 (0.1354) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:27:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.082 (0.103) Loss 0.1517 (0.1369) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:28:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.040 (0.103) Loss 0.1306 (0.1365) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:28:01 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:28:01 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:28:01 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:28:03 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][0/256] eta 0:07:35 lr 0.000024 wd 0.0500 time 1.7791 (1.7791) loss 0.8487 (0.8487) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:05 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][10/256] eta 0:01:33 lr 0.000023 wd 0.0500 time 0.1403 (0.3811) loss 0.7636 (0.7600) grad_norm 3.5785 (4.5434) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:07 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][20/256] eta 0:01:05 lr 0.000023 wd 0.0500 time 0.1455 (0.2777) loss 1.0069 (0.7652) grad_norm 12.1065 (6.1191) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:09 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][30/256] eta 0:00:54 lr 0.000023 wd 0.0500 time 0.1473 (0.2404) loss 0.8331 (0.7701) grad_norm 4.6656 (6.2568) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:10 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][40/256] eta 0:00:48 lr 0.000023 wd 0.0500 time 0.2202 (0.2228) loss 0.6657 (0.7712) grad_norm 4.1285 (6.2178) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:12 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][50/256] eta 0:00:43 lr 0.000023 wd 0.0500 time 0.1355 (0.2127) loss 0.7679 (0.7650) grad_norm 2.9573 (5.8276) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][60/256] eta 0:00:42 lr 0.000023 wd 0.0500 time 0.3509 (0.2185) loss 1.0055 (0.7651) grad_norm 6.3671 (5.9073) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:17 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][70/256] eta 0:00:41 lr 0.000023 wd 0.0500 time 0.1583 (0.2219) loss 0.6806 (0.7633) grad_norm 5.6505 (6.0005) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:19 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][80/256] eta 0:00:38 lr 0.000022 wd 0.0500 time 0.1450 (0.2163) loss 0.7875 (0.7563) grad_norm 3.3324 (6.1957) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][90/256] eta 0:00:34 lr 0.000022 wd 0.0500 time 0.1326 (0.2098) loss 0.5403 (0.7531) grad_norm 5.0446 (6.1717) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:22 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][100/256] eta 0:00:31 lr 0.000022 wd 0.0500 time 0.1454 (0.2046) loss 0.7948 (0.7510) grad_norm 2.3271 (6.1004) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][110/256] eta 0:00:29 lr 0.000022 wd 0.0500 time 0.1352 (0.1997) loss 0.7818 (0.7533) grad_norm 6.6636 (6.1465) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][120/256] eta 0:00:26 lr 0.000022 wd 0.0500 time 0.1860 (0.1965) loss 0.7125 (0.7541) grad_norm 17.9424 (6.1643) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][130/256] eta 0:00:24 lr 0.000022 wd 0.0500 time 0.1508 (0.1937) loss 0.7365 (0.7493) grad_norm 4.8000 (6.0603) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:29 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][140/256] eta 0:00:22 lr 0.000022 wd 0.0500 time 0.2379 (0.1959) loss 0.7900 (0.7478) grad_norm 6.2770 (6.0462) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][150/256] eta 0:00:21 lr 0.000021 wd 0.0500 time 0.1643 (0.1995) loss 0.6759 (0.7484) grad_norm 6.2915 (6.1322) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:33 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][160/256] eta 0:00:18 lr 0.000021 wd 0.0500 time 0.1455 (0.1971) loss 0.5766 (0.7449) grad_norm 6.2666 (6.1488) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:35 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][170/256] eta 0:00:16 lr 0.000021 wd 0.0500 time 0.1645 (0.1952) loss 0.6352 (0.7435) grad_norm 7.9227 (6.1207) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][180/256] eta 0:00:14 lr 0.000021 wd 0.0500 time 0.1358 (0.1934) loss 0.8084 (0.7415) grad_norm 4.6597 (6.0776) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:38 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][190/256] eta 0:00:12 lr 0.000021 wd 0.0500 time 0.1564 (0.1917) loss 0.8753 (0.7397) grad_norm 4.6567 (6.0243) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][200/256] eta 0:00:10 lr 0.000021 wd 0.0500 time 0.1423 (0.1900) loss 0.6809 (0.7393) grad_norm 4.0550 (6.0192) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][210/256] eta 0:00:08 lr 0.000021 wd 0.0500 time 0.1516 (0.1886) loss 0.7825 (0.7401) grad_norm 3.7097 (6.0376) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:43 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][220/256] eta 0:00:06 lr 0.000020 wd 0.0500 time 0.2735 (0.1906) loss 0.5838 (0.7436) grad_norm 15.0082 (6.1353) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:46 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][230/256] eta 0:00:05 lr 0.000020 wd 0.0500 time 0.1502 (0.1924) loss 0.8519 (0.7436) grad_norm 4.2982 (6.0751) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][240/256] eta 0:00:03 lr 0.000020 wd 0.0500 time 0.1324 (0.1908) loss 0.8367 (0.7465) grad_norm 7.2134 (6.0367) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:49 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [7/15][250/256] eta 0:00:01 lr 0.000020 wd 0.0500 time 0.1322 (0.1889) loss 0.6462 (0.7477) grad_norm 6.6368 (6.0635) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:28:49 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 7 training takes 0:00:48 | |
| [2025-12-08 16:28:49 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_7.pth saving...... | |
| [2025-12-08 16:28:50 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_7.pth saved !!! | |
| [2025-12-08 16:28:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 2.673 (2.673) Loss 0.0989 (0.0989) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:28:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.057 (0.315) Loss 0.1309 (0.1126) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:28:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.041 (0.201) Loss 0.1454 (0.1238) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:28:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.035 (0.159) Loss 0.1251 (0.1248) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:28:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.417 (0.155) Loss 0.1141 (0.1230) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:28:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.061 (0.149) Loss 0.0999 (0.1189) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:28:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.116 (0.143) Loss 0.1050 (0.1169) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:29:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.056 (0.141) Loss 0.0947 (0.1164) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:29:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.174 (0.132) Loss 0.1099 (0.1157) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:29:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.049 (0.126) Loss 0.1181 (0.1164) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:29:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.038 (0.121) Loss 0.1033 (0.1155) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:29:03 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:29:03 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:29:03 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:29:04 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][0/256] eta 0:05:52 lr 0.000020 wd 0.0500 time 1.3787 (1.3787) loss 0.7764 (0.7764) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:07 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][10/256] eta 0:01:21 lr 0.000020 wd 0.0500 time 0.1564 (0.3299) loss 0.7203 (0.7456) grad_norm 1.4736 (6.0720) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:08 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][20/256] eta 0:01:00 lr 0.000020 wd 0.0500 time 0.1573 (0.2578) loss 0.7631 (0.7301) grad_norm 1.7623 (5.1005) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:10 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][30/256] eta 0:00:50 lr 0.000019 wd 0.0500 time 0.1439 (0.2253) loss 0.7234 (0.7472) grad_norm 4.2765 (5.4088) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:12 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][40/256] eta 0:00:48 lr 0.000019 wd 0.0500 time 0.1891 (0.2253) loss 0.7376 (0.7517) grad_norm 5.3264 (5.3383) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][50/256] eta 0:00:47 lr 0.000019 wd 0.0500 time 0.1880 (0.2294) loss 0.8232 (0.7533) grad_norm 4.7656 (5.3576) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:16 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][60/256] eta 0:00:42 lr 0.000019 wd 0.0500 time 0.1459 (0.2182) loss 0.8595 (0.7517) grad_norm 4.1448 (5.1367) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:18 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][70/256] eta 0:00:39 lr 0.000019 wd 0.0500 time 0.2470 (0.2124) loss 0.6871 (0.7496) grad_norm 5.0007 (4.9659) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][80/256] eta 0:00:36 lr 0.000019 wd 0.0500 time 0.1528 (0.2068) loss 0.6579 (0.7462) grad_norm 2.8252 (5.1664) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:21 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][90/256] eta 0:00:33 lr 0.000018 wd 0.0500 time 0.1472 (0.2010) loss 0.6171 (0.7499) grad_norm 3.4453 (5.4208) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][100/256] eta 0:00:30 lr 0.000018 wd 0.0500 time 0.1501 (0.1969) loss 0.5928 (0.7505) grad_norm 6.2406 (5.4524) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:24 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][110/256] eta 0:00:28 lr 0.000018 wd 0.0500 time 0.1384 (0.1931) loss 0.6098 (0.7532) grad_norm 8.4194 (5.5832) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][120/256] eta 0:00:26 lr 0.000018 wd 0.0500 time 0.2976 (0.1969) loss 0.7472 (0.7563) grad_norm 5.0978 (5.5414) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:29 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][130/256] eta 0:00:25 lr 0.000018 wd 0.0500 time 0.1408 (0.2004) loss 0.7559 (0.7535) grad_norm 3.3100 (5.4450) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][140/256] eta 0:00:22 lr 0.000018 wd 0.0500 time 0.1426 (0.1973) loss 0.8077 (0.7515) grad_norm 3.9229 (5.3025) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:32 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][150/256] eta 0:00:20 lr 0.000017 wd 0.0500 time 0.1332 (0.1944) loss 0.5435 (0.7494) grad_norm 8.2021 (5.8890) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][160/256] eta 0:00:18 lr 0.000017 wd 0.0500 time 0.1755 (0.1924) loss 0.8077 (0.7465) grad_norm 7.0768 (5.7540) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][170/256] eta 0:00:16 lr 0.000017 wd 0.0500 time 0.1554 (0.1900) loss 0.5834 (0.7456) grad_norm 2.2758 (5.7020) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:37 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][180/256] eta 0:00:14 lr 0.000017 wd 0.0500 time 0.1416 (0.1881) loss 0.8164 (0.7456) grad_norm 5.6356 (5.7504) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][190/256] eta 0:00:12 lr 0.000017 wd 0.0500 time 0.1454 (0.1864) loss 0.7470 (0.7434) grad_norm 3.2374 (5.7052) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][200/256] eta 0:00:10 lr 0.000017 wd 0.0500 time 0.2699 (0.1891) loss 0.6261 (0.7431) grad_norm 5.0912 (5.7388) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:43 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][210/256] eta 0:00:08 lr 0.000017 wd 0.0500 time 0.1575 (0.1917) loss 0.6507 (0.7449) grad_norm 5.3345 (5.7716) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:45 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][220/256] eta 0:00:06 lr 0.000016 wd 0.0500 time 0.1429 (0.1901) loss 0.6923 (0.7471) grad_norm 8.6436 (5.7617) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][230/256] eta 0:00:04 lr 0.000016 wd 0.0500 time 0.1497 (0.1888) loss 0.5748 (0.7466) grad_norm 6.7108 (5.7195) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:48 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][240/256] eta 0:00:02 lr 0.000016 wd 0.0500 time 0.1321 (0.1874) loss 0.6527 (0.7468) grad_norm 2.5097 (5.7208) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:50 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [8/15][250/256] eta 0:00:01 lr 0.000016 wd 0.0500 time 0.1342 (0.1855) loss 0.8257 (0.7470) grad_norm 8.6320 (5.6927) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:29:50 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 8 training takes 0:00:47 | |
| [2025-12-08 16:29:50 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_8.pth saving...... | |
| [2025-12-08 16:29:56 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_8.pth saved !!! | |
| [2025-12-08 16:29:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 0.937 (0.937) Loss 0.1162 (0.1162) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:29:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.038 (0.151) Loss 0.1422 (0.1201) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:29:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.050 (0.110) Loss 0.1617 (0.1319) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:29:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.046 (0.100) Loss 0.1250 (0.1320) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.325 (0.101) Loss 0.1315 (0.1325) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.069 (0.096) Loss 0.1117 (0.1300) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.031 (0.094) Loss 0.1323 (0.1292) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.051 (0.089) Loss 0.1165 (0.1286) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:03 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.201 (0.091) Loss 0.1168 (0.1271) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:04 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.046 (0.089) Loss 0.1090 (0.1266) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:05 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.080 (0.088) Loss 0.1178 (0.1251) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:05 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:30:05 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:30:05 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:30:08 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][0/256] eta 0:10:14 lr 0.000016 wd 0.0500 time 2.4023 (2.4023) loss 0.5762 (0.5762) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][10/256] eta 0:01:57 lr 0.000016 wd 0.0500 time 0.1919 (0.4777) loss 0.6745 (0.7440) grad_norm 5.1082 (4.9627) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:12 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][20/256] eta 0:01:17 lr 0.000015 wd 0.0500 time 0.1442 (0.3274) loss 0.8101 (0.7562) grad_norm 4.0289 (4.6094) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:14 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][30/256] eta 0:01:01 lr 0.000015 wd 0.0500 time 0.1348 (0.2714) loss 0.8535 (0.7732) grad_norm 6.1541 (5.0966) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][40/256] eta 0:00:52 lr 0.000015 wd 0.0500 time 0.1395 (0.2442) loss 0.7309 (0.7652) grad_norm 8.4809 (5.5882) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:17 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][50/256] eta 0:00:47 lr 0.000015 wd 0.0500 time 0.1416 (0.2302) loss 0.6555 (0.7627) grad_norm 4.3665 (5.3418) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:19 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][60/256] eta 0:00:43 lr 0.000015 wd 0.0500 time 0.2740 (0.2209) loss 0.8080 (0.7546) grad_norm 3.9977 (5.0427) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:21 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][70/256] eta 0:00:40 lr 0.000015 wd 0.0500 time 0.2246 (0.2161) loss 0.5889 (0.7514) grad_norm 5.2151 (4.9931) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][80/256] eta 0:00:38 lr 0.000015 wd 0.0500 time 0.2332 (0.2202) loss 0.9296 (0.7563) grad_norm 3.2309 (5.2909) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][90/256] eta 0:00:35 lr 0.000014 wd 0.0500 time 0.1443 (0.2167) loss 0.7133 (0.7497) grad_norm 5.1198 (5.1529) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][100/256] eta 0:00:32 lr 0.000014 wd 0.0500 time 0.1437 (0.2103) loss 0.8170 (0.7507) grad_norm 6.3726 (5.0559) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:28 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][110/256] eta 0:00:29 lr 0.000014 wd 0.0500 time 0.1422 (0.2050) loss 0.8004 (0.7516) grad_norm 6.7385 (5.2350) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:30 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][120/256] eta 0:00:27 lr 0.000014 wd 0.0500 time 0.1459 (0.2014) loss 0.7156 (0.7490) grad_norm 9.0274 (5.2500) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][130/256] eta 0:00:24 lr 0.000014 wd 0.0500 time 0.1402 (0.1979) loss 0.6974 (0.7490) grad_norm 7.2673 (5.2544) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:33 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][140/256] eta 0:00:22 lr 0.000014 wd 0.0500 time 0.1600 (0.1952) loss 0.8056 (0.7499) grad_norm 5.7423 (5.1948) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:35 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][150/256] eta 0:00:20 lr 0.000013 wd 0.0500 time 0.2565 (0.1939) loss 0.8201 (0.7544) grad_norm 8.1730 (5.2680) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:37 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][160/256] eta 0:00:18 lr 0.000013 wd 0.0500 time 0.1917 (0.1974) loss 0.8524 (0.7521) grad_norm 7.2876 (5.2171) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][170/256] eta 0:00:17 lr 0.000013 wd 0.0500 time 0.1566 (0.1982) loss 0.8926 (0.7520) grad_norm 9.5591 (5.2512) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][180/256] eta 0:00:14 lr 0.000013 wd 0.0500 time 0.1352 (0.1956) loss 0.7035 (0.7521) grad_norm 7.3813 (5.2225) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:42 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][190/256] eta 0:00:12 lr 0.000013 wd 0.0500 time 0.1589 (0.1937) loss 0.7189 (0.7529) grad_norm 2.8012 (5.1688) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:44 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][200/256] eta 0:00:10 lr 0.000013 wd 0.0500 time 0.1413 (0.1918) loss 0.9204 (0.7518) grad_norm 5.0932 (5.1456) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:45 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][210/256] eta 0:00:08 lr 0.000013 wd 0.0500 time 0.1375 (0.1902) loss 0.7927 (0.7516) grad_norm 4.6737 (5.1696) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][220/256] eta 0:00:06 lr 0.000012 wd 0.0500 time 0.1395 (0.1887) loss 0.7662 (0.7527) grad_norm 7.6711 (5.1997) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:49 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][230/256] eta 0:00:04 lr 0.000012 wd 0.0500 time 0.1933 (0.1879) loss 0.8525 (0.7535) grad_norm 6.3251 (5.2109) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:51 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][240/256] eta 0:00:03 lr 0.000012 wd 0.0500 time 0.1703 (0.1901) loss 0.8049 (0.7537) grad_norm 6.0166 (5.2624) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:53 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [9/15][250/256] eta 0:00:01 lr 0.000012 wd 0.0500 time 0.1313 (0.1882) loss 0.7020 (0.7535) grad_norm 7.3012 (5.2568) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:30:53 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 9 training takes 0:00:48 | |
| [2025-12-08 16:30:53 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_9.pth saving...... | |
| [2025-12-08 16:30:55 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_9.pth saved !!! | |
| [2025-12-08 16:30:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.301 (1.301) Loss 0.0773 (0.0773) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.043 (0.183) Loss 0.1390 (0.0874) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.061 (0.132) Loss 0.1602 (0.1131) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.037 (0.110) Loss 0.1323 (0.1191) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:30:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.197 (0.105) Loss 0.1399 (0.1248) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.092 (0.100) Loss 0.1267 (0.1248) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.068 (0.096) Loss 0.1373 (0.1270) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.051 (0.092) Loss 0.1377 (0.1288) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:03 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.317 (0.095) Loss 0.1273 (0.1302) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:04 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.126 (0.099) Loss 0.1263 (0.1309) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:05 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.067 (0.100) Loss 0.1387 (0.1307) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:06 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:31:06 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:31:06 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:31:08 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][0/256] eta 0:06:23 lr 0.000012 wd 0.0500 time 1.4990 (1.4990) loss 0.7515 (0.7515) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:10 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][10/256] eta 0:01:21 lr 0.000012 wd 0.0500 time 0.1897 (0.3327) loss 0.8015 (0.7828) grad_norm 5.4163 (5.8290) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][20/256] eta 0:01:01 lr 0.000012 wd 0.0500 time 0.1334 (0.2596) loss 0.7228 (0.7671) grad_norm 6.5182 (5.0844) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:13 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][30/256] eta 0:00:51 lr 0.000011 wd 0.0500 time 0.1483 (0.2265) loss 0.9259 (0.7499) grad_norm 3.3979 (4.5890) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][40/256] eta 0:00:45 lr 0.000011 wd 0.0500 time 0.1513 (0.2099) loss 0.8740 (0.7581) grad_norm 6.7045 (4.6706) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:16 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][50/256] eta 0:00:41 lr 0.000011 wd 0.0500 time 0.1673 (0.1990) loss 0.7783 (0.7511) grad_norm 5.3590 (4.9582) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:18 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][60/256] eta 0:00:38 lr 0.000011 wd 0.0500 time 0.2381 (0.1984) loss 0.7507 (0.7565) grad_norm 5.6801 (4.9056) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:21 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][70/256] eta 0:00:38 lr 0.000011 wd 0.0500 time 0.2151 (0.2061) loss 0.6891 (0.7534) grad_norm 9.3247 (5.0042) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][80/256] eta 0:00:35 lr 0.000011 wd 0.0500 time 0.1417 (0.2039) loss 0.8199 (0.7575) grad_norm 3.2965 (4.9895) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:24 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][90/256] eta 0:00:33 lr 0.000010 wd 0.0500 time 0.1366 (0.2000) loss 0.5660 (0.7542) grad_norm 3.2476 (5.0307) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:26 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][100/256] eta 0:00:30 lr 0.000010 wd 0.0500 time 0.1414 (0.1963) loss 0.7403 (0.7514) grad_norm 4.0274 (4.9224) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][110/256] eta 0:00:28 lr 0.000010 wd 0.0500 time 0.1414 (0.1925) loss 0.8217 (0.7524) grad_norm 5.7161 (4.8845) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:29 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][120/256] eta 0:00:25 lr 0.000010 wd 0.0500 time 0.1602 (0.1894) loss 0.8750 (0.7562) grad_norm 5.8746 (4.9520) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][130/256] eta 0:00:23 lr 0.000010 wd 0.0500 time 0.1612 (0.1871) loss 0.7177 (0.7538) grad_norm 6.7667 (4.9799) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:32 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][140/256] eta 0:00:21 lr 0.000010 wd 0.0500 time 0.1607 (0.1865) loss 0.7879 (0.7535) grad_norm 7.8584 (4.9992) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:35 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][150/256] eta 0:00:20 lr 0.000010 wd 0.0500 time 0.2069 (0.1909) loss 0.6887 (0.7567) grad_norm 7.2049 (5.2332) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:37 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][160/256] eta 0:00:18 lr 0.000009 wd 0.0500 time 0.1625 (0.1915) loss 0.8826 (0.7574) grad_norm 11.1722 (5.2889) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:38 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][170/256] eta 0:00:16 lr 0.000009 wd 0.0500 time 0.1399 (0.1894) loss 0.7468 (0.7584) grad_norm 6.0606 (5.4079) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:40 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][180/256] eta 0:00:14 lr 0.000009 wd 0.0500 time 0.1376 (0.1876) loss 0.6544 (0.7548) grad_norm 3.3310 (5.3261) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:42 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][190/256] eta 0:00:12 lr 0.000009 wd 0.0500 time 0.1447 (0.1858) loss 0.7922 (0.7545) grad_norm 3.5781 (5.2750) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:43 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][200/256] eta 0:00:10 lr 0.000009 wd 0.0500 time 0.1538 (0.1842) loss 0.6019 (0.7519) grad_norm 2.5973 (5.3463) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:45 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][210/256] eta 0:00:08 lr 0.000009 wd 0.0500 time 0.1357 (0.1828) loss 0.8165 (0.7534) grad_norm 5.4969 (5.3262) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:46 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][220/256] eta 0:00:06 lr 0.000009 wd 0.0500 time 0.1609 (0.1821) loss 0.6423 (0.7522) grad_norm 3.1063 (5.3213) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:49 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][230/256] eta 0:00:04 lr 0.000008 wd 0.0500 time 0.2881 (0.1849) loss 0.7387 (0.7498) grad_norm 2.6302 (5.2878) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:51 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][240/256] eta 0:00:02 lr 0.000008 wd 0.0500 time 0.1309 (0.1862) loss 0.7115 (0.7487) grad_norm 6.2615 (5.2806) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:52 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [10/15][250/256] eta 0:00:01 lr 0.000008 wd 0.0500 time 0.1342 (0.1844) loss 0.8173 (0.7482) grad_norm 3.2573 (5.2074) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:31:53 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 10 training takes 0:00:47 | |
| [2025-12-08 16:31:53 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_10.pth saving...... | |
| [2025-12-08 16:31:54 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_10.pth saved !!! | |
| [2025-12-08 16:31:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.053 (1.053) Loss 0.0751 (0.0751) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.063 (0.165) Loss 0.1539 (0.0890) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.049 (0.116) Loss 0.1691 (0.1170) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.081 (0.106) Loss 0.1329 (0.1242) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.076 (0.098) Loss 0.1498 (0.1297) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:31:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.096 (0.097) Loss 0.1160 (0.1287) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.051 (0.092) Loss 0.1315 (0.1293) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.047 (0.090) Loss 0.1214 (0.1310) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.163 (0.099) Loss 0.1135 (0.1288) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:03 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.070 (0.100) Loss 0.1107 (0.1275) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:04 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.050 (0.101) Loss 0.1134 (0.1258) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:05 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:32:05 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:32:05 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:32:06 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][0/256] eta 0:06:06 lr 0.000008 wd 0.0500 time 1.4308 (1.4308) loss 0.7186 (0.7186) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:09 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][10/256] eta 0:01:21 lr 0.000008 wd 0.0500 time 0.1729 (0.3319) loss 0.6123 (0.6948) grad_norm 7.0914 (4.7683) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:10 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][20/256] eta 0:00:58 lr 0.000008 wd 0.0500 time 0.1446 (0.2497) loss 0.6391 (0.7162) grad_norm 2.5713 (4.5157) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:12 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][30/256] eta 0:00:49 lr 0.000008 wd 0.0500 time 0.1465 (0.2192) loss 0.6712 (0.7146) grad_norm 5.3826 (4.6127) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:13 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][40/256] eta 0:00:44 lr 0.000008 wd 0.0500 time 0.1353 (0.2037) loss 0.6711 (0.7145) grad_norm 7.3599 (4.8555) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][50/256] eta 0:00:40 lr 0.000007 wd 0.0500 time 0.2395 (0.1957) loss 0.6367 (0.7114) grad_norm 5.4342 (4.7579) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:18 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][60/256] eta 0:00:41 lr 0.000007 wd 0.0500 time 0.2404 (0.2097) loss 0.6705 (0.7162) grad_norm 2.9193 (4.9543) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][70/256] eta 0:00:38 lr 0.000007 wd 0.0500 time 0.1363 (0.2078) loss 0.5846 (0.7108) grad_norm 2.0840 (4.7191) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:21 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][80/256] eta 0:00:35 lr 0.000007 wd 0.0500 time 0.1361 (0.2038) loss 0.6939 (0.7152) grad_norm 5.6949 (4.7979) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][90/256] eta 0:00:32 lr 0.000007 wd 0.0500 time 0.1346 (0.1987) loss 0.6893 (0.7155) grad_norm 1.4981 (4.7033) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][100/256] eta 0:00:30 lr 0.000007 wd 0.0500 time 0.1454 (0.1946) loss 0.7500 (0.7209) grad_norm 7.6919 (4.7504) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:26 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][110/256] eta 0:00:27 lr 0.000007 wd 0.0500 time 0.1478 (0.1912) loss 0.7878 (0.7224) grad_norm 4.2049 (4.9870) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:28 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][120/256] eta 0:00:25 lr 0.000006 wd 0.0500 time 0.1464 (0.1884) loss 0.8855 (0.7310) grad_norm 5.4299 (5.1126) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:29 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][130/256] eta 0:00:23 lr 0.000006 wd 0.0500 time 0.2706 (0.1870) loss 0.5665 (0.7319) grad_norm 4.7050 (5.1411) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:32 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][140/256] eta 0:00:22 lr 0.000006 wd 0.0500 time 0.2264 (0.1914) loss 0.7141 (0.7315) grad_norm 6.4771 (5.5384) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][150/256] eta 0:00:20 lr 0.000006 wd 0.0500 time 0.1375 (0.1918) loss 0.6936 (0.7321) grad_norm 3.6917 (5.4418) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][160/256] eta 0:00:18 lr 0.000006 wd 0.0500 time 0.1524 (0.1900) loss 0.8502 (0.7348) grad_norm 3.0263 (5.3190) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:37 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][170/256] eta 0:00:16 lr 0.000006 wd 0.0500 time 0.1454 (0.1878) loss 0.8031 (0.7334) grad_norm 5.7508 (5.2909) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][180/256] eta 0:00:14 lr 0.000006 wd 0.0500 time 0.1383 (0.1861) loss 0.7955 (0.7354) grad_norm 6.6560 (5.4133) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:40 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][190/256] eta 0:00:12 lr 0.000006 wd 0.0500 time 0.1427 (0.1843) loss 0.7862 (0.7346) grad_norm 14.3333 (5.4908) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:42 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][200/256] eta 0:00:10 lr 0.000006 wd 0.0500 time 0.1531 (0.1830) loss 0.6122 (0.7344) grad_norm 6.6772 (5.4472) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:43 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][210/256] eta 0:00:08 lr 0.000005 wd 0.0500 time 0.1978 (0.1819) loss 0.6687 (0.7333) grad_norm 3.2771 (5.3968) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:46 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][220/256] eta 0:00:06 lr 0.000005 wd 0.0500 time 0.2078 (0.1852) loss 0.8776 (0.7348) grad_norm 3.7404 (5.3705) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:48 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][230/256] eta 0:00:04 lr 0.000005 wd 0.0500 time 0.1627 (0.1862) loss 0.6357 (0.7330) grad_norm 5.7611 (5.3440) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:49 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][240/256] eta 0:00:02 lr 0.000005 wd 0.0500 time 0.1323 (0.1848) loss 0.8577 (0.7349) grad_norm 4.3855 (5.3000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:51 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [11/15][250/256] eta 0:00:01 lr 0.000005 wd 0.0500 time 0.1329 (0.1830) loss 0.6906 (0.7332) grad_norm 2.9793 (5.4286) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:32:52 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 11 training takes 0:00:46 | |
| [2025-12-08 16:32:52 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_11.pth saving...... | |
| [2025-12-08 16:32:53 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_11.pth saved !!! | |
| [2025-12-08 16:32:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 0.938 (0.938) Loss 0.0862 (0.0862) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.064 (0.166) Loss 0.1396 (0.1037) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.093 (0.121) Loss 0.1486 (0.1165) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.033 (0.107) Loss 0.1307 (0.1186) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.289 (0.102) Loss 0.1591 (0.1271) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.090 (0.099) Loss 0.1251 (0.1285) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:32:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.041 (0.105) Loss 0.1453 (0.1310) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.034 (0.104) Loss 0.1533 (0.1345) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.409 (0.111) Loss 0.1267 (0.1352) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.048 (0.107) Loss 0.1128 (0.1345) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:03 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.039 (0.103) Loss 0.1340 (0.1333) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:04 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:33:04 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:33:04 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:33:05 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][0/256] eta 0:05:50 lr 0.000005 wd 0.0500 time 1.3678 (1.3678) loss 0.7355 (0.7355) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:07 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][10/256] eta 0:01:21 lr 0.000005 wd 0.0500 time 0.1785 (0.3308) loss 0.5577 (0.6993) grad_norm 4.2685 (5.7733) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:09 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][20/256] eta 0:00:59 lr 0.000005 wd 0.0500 time 0.1401 (0.2515) loss 0.9186 (0.7240) grad_norm 5.3209 (6.2370) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][30/256] eta 0:00:50 lr 0.000005 wd 0.0500 time 0.1449 (0.2214) loss 0.7291 (0.7337) grad_norm 4.7453 (6.0492) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:12 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][40/256] eta 0:00:45 lr 0.000004 wd 0.0500 time 0.1752 (0.2102) loss 0.6252 (0.7296) grad_norm 4.7850 (5.9225) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][50/256] eta 0:00:45 lr 0.000004 wd 0.0500 time 0.2496 (0.2189) loss 0.7672 (0.7321) grad_norm 2.0590 (5.5376) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:17 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][60/256] eta 0:00:41 lr 0.000004 wd 0.0500 time 0.1713 (0.2139) loss 0.7977 (0.7346) grad_norm 6.3206 (5.6253) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:18 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][70/256] eta 0:00:38 lr 0.000004 wd 0.0500 time 0.1387 (0.2051) loss 0.7355 (0.7247) grad_norm 7.8269 (5.5101) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][80/256] eta 0:00:34 lr 0.000004 wd 0.0500 time 0.1397 (0.1988) loss 0.8021 (0.7264) grad_norm 8.3249 (5.4829) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:22 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][90/256] eta 0:00:32 lr 0.000004 wd 0.0500 time 0.2670 (0.1958) loss 0.8114 (0.7261) grad_norm 1.7377 (5.5060) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:23 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][100/256] eta 0:00:30 lr 0.000004 wd 0.0500 time 0.1563 (0.1928) loss 0.7847 (0.7268) grad_norm 5.2415 (5.4845) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:25 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][110/256] eta 0:00:27 lr 0.000004 wd 0.0500 time 0.1621 (0.1897) loss 0.6136 (0.7257) grad_norm 5.2840 (5.3923) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][120/256] eta 0:00:25 lr 0.000004 wd 0.0500 time 0.1888 (0.1892) loss 0.9077 (0.7244) grad_norm 1.2489 (5.2208) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:29 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][130/256] eta 0:00:24 lr 0.000004 wd 0.0500 time 0.2212 (0.1937) loss 0.8115 (0.7281) grad_norm 5.4075 (5.1794) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][140/256] eta 0:00:22 lr 0.000003 wd 0.0500 time 0.1445 (0.1932) loss 0.7686 (0.7301) grad_norm 5.0516 (5.1561) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:33 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][150/256] eta 0:00:20 lr 0.000003 wd 0.0500 time 0.1399 (0.1905) loss 0.7386 (0.7287) grad_norm 5.6940 (5.1138) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][160/256] eta 0:00:18 lr 0.000003 wd 0.0500 time 0.1400 (0.1885) loss 0.7027 (0.7310) grad_norm 4.0545 (5.1433) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][170/256] eta 0:00:16 lr 0.000003 wd 0.0500 time 0.1476 (0.1869) loss 0.6928 (0.7355) grad_norm 6.2465 (5.1840) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:37 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][180/256] eta 0:00:14 lr 0.000003 wd 0.0500 time 0.1357 (0.1854) loss 0.5668 (0.7359) grad_norm 5.6695 (5.2288) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:39 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][190/256] eta 0:00:12 lr 0.000003 wd 0.0500 time 0.1440 (0.1838) loss 0.7258 (0.7354) grad_norm 8.0476 (5.2093) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][200/256] eta 0:00:10 lr 0.000003 wd 0.0500 time 0.1726 (0.1833) loss 0.7196 (0.7341) grad_norm 1.5806 (5.1268) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:43 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][210/256] eta 0:00:08 lr 0.000003 wd 0.0500 time 0.2284 (0.1869) loss 0.8503 (0.7345) grad_norm 2.5741 (5.0945) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:45 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][220/256] eta 0:00:06 lr 0.000003 wd 0.0500 time 0.1428 (0.1869) loss 0.8694 (0.7352) grad_norm 10.3727 (5.1626) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][230/256] eta 0:00:04 lr 0.000003 wd 0.0500 time 0.1430 (0.1856) loss 0.7880 (0.7368) grad_norm 4.6327 (5.1813) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:48 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][240/256] eta 0:00:02 lr 0.000003 wd 0.0500 time 0.1320 (0.1843) loss 0.7672 (0.7388) grad_norm 8.7716 (5.3602) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:50 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [12/15][250/256] eta 0:00:01 lr 0.000002 wd 0.0500 time 0.1322 (0.1825) loss 0.5516 (0.7382) grad_norm 4.2036 (5.3405) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:33:50 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 12 training takes 0:00:46 | |
| [2025-12-08 16:33:50 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_12.pth saving...... | |
| [2025-12-08 16:33:51 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_12.pth saved !!! | |
| [2025-12-08 16:33:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.199 (1.199) Loss 0.0799 (0.0799) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.045 (0.172) Loss 0.1526 (0.0964) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.066 (0.128) Loss 0.1646 (0.1188) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.129 (0.131) Loss 0.1429 (0.1241) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.260 (0.130) Loss 0.1664 (0.1328) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.057 (0.127) Loss 0.1270 (0.1335) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:33:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.089 (0.123) Loss 0.1451 (0.1354) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.062 (0.117) Loss 0.1473 (0.1383) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.138 (0.111) Loss 0.1229 (0.1375) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.040 (0.107) Loss 0.1133 (0.1363) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:02 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.047 (0.104) Loss 0.1260 (0.1345) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:02 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:34:02 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:34:02 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:34:04 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][0/256] eta 0:06:39 lr 0.000002 wd 0.0500 time 1.5599 (1.5599) loss 0.8039 (0.8039) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:06 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][10/256] eta 0:01:21 lr 0.000002 wd 0.0500 time 0.1569 (0.3322) loss 0.7408 (0.7138) grad_norm 3.7318 (3.2004) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:08 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][20/256] eta 0:00:59 lr 0.000002 wd 0.0500 time 0.1825 (0.2530) loss 0.7315 (0.7109) grad_norm 5.1478 (3.6737) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:10 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][30/256] eta 0:00:52 lr 0.000002 wd 0.0500 time 0.2578 (0.2339) loss 0.6988 (0.7217) grad_norm 7.6147 (4.1499) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:12 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][40/256] eta 0:00:50 lr 0.000002 wd 0.0500 time 0.1624 (0.2341) loss 0.8467 (0.7223) grad_norm 3.7151 (4.2126) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:14 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][50/256] eta 0:00:46 lr 0.000002 wd 0.0500 time 0.1639 (0.2244) loss 0.9351 (0.7367) grad_norm 6.3748 (4.4933) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][60/256] eta 0:00:41 lr 0.000002 wd 0.0500 time 0.1418 (0.2131) loss 0.7332 (0.7389) grad_norm 5.1177 (4.9165) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:17 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][70/256] eta 0:00:38 lr 0.000002 wd 0.0500 time 0.1710 (0.2076) loss 0.5534 (0.7356) grad_norm 3.2396 (5.1356) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:19 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][80/256] eta 0:00:35 lr 0.000002 wd 0.0500 time 0.1648 (0.2017) loss 0.5700 (0.7376) grad_norm 3.2301 (5.0283) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:20 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][90/256] eta 0:00:32 lr 0.000002 wd 0.0500 time 0.1379 (0.1964) loss 0.7758 (0.7379) grad_norm 5.2993 (5.0564) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:22 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][100/256] eta 0:00:30 lr 0.000002 wd 0.0500 time 0.1511 (0.1926) loss 0.6753 (0.7352) grad_norm 4.5957 (4.8898) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:24 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][110/256] eta 0:00:28 lr 0.000002 wd 0.0500 time 0.2352 (0.1945) loss 0.8728 (0.7343) grad_norm 1.9761 (4.7965) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:26 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][120/256] eta 0:00:26 lr 0.000002 wd 0.0500 time 0.1739 (0.1974) loss 0.6021 (0.7332) grad_norm 3.8834 (4.7364) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:28 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][130/256] eta 0:00:24 lr 0.000001 wd 0.0500 time 0.1805 (0.1972) loss 0.5550 (0.7339) grad_norm 6.1955 (4.8678) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:30 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][140/256] eta 0:00:22 lr 0.000001 wd 0.0500 time 0.1355 (0.1940) loss 0.6844 (0.7308) grad_norm 8.8701 (4.8550) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:31 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][150/256] eta 0:00:20 lr 0.000001 wd 0.0500 time 0.1375 (0.1914) loss 0.6455 (0.7305) grad_norm 3.9174 (4.9251) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:33 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][160/256] eta 0:00:18 lr 0.000001 wd 0.0500 time 0.1416 (0.1893) loss 0.7068 (0.7294) grad_norm 3.7725 (4.8382) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][170/256] eta 0:00:16 lr 0.000001 wd 0.0500 time 0.1538 (0.1875) loss 0.6239 (0.7293) grad_norm 3.2325 (4.9598) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:36 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][180/256] eta 0:00:14 lr 0.000001 wd 0.0500 time 0.1341 (0.1860) loss 0.9226 (0.7327) grad_norm 5.6996 (5.0206) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:38 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][190/256] eta 0:00:12 lr 0.000001 wd 0.0500 time 0.2301 (0.1865) loss 0.7233 (0.7304) grad_norm 9.4022 (5.0282) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:40 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][200/256] eta 0:00:10 lr 0.000001 wd 0.0500 time 0.1518 (0.1891) loss 0.7418 (0.7308) grad_norm 3.4207 (5.0596) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:42 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][210/256] eta 0:00:08 lr 0.000001 wd 0.0500 time 0.1451 (0.1892) loss 0.7098 (0.7306) grad_norm 4.8834 (5.1023) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:44 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][220/256] eta 0:00:06 lr 0.000001 wd 0.0500 time 0.1432 (0.1876) loss 0.6552 (0.7295) grad_norm 3.2501 (5.1727) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:45 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][230/256] eta 0:00:04 lr 0.000001 wd 0.0500 time 0.1478 (0.1863) loss 0.7899 (0.7301) grad_norm 3.9542 (5.1077) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][240/256] eta 0:00:02 lr 0.000001 wd 0.0500 time 0.1323 (0.1850) loss 0.8665 (0.7339) grad_norm 4.6473 (5.1453) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:48 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [13/15][250/256] eta 0:00:01 lr 0.000001 wd 0.0500 time 0.1316 (0.1832) loss 0.7854 (0.7336) grad_norm 4.3011 (5.0708) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:34:49 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 13 training takes 0:00:46 | |
| [2025-12-08 16:34:49 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_13.pth saving...... | |
| [2025-12-08 16:34:50 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_13.pth saved !!! | |
| [2025-12-08 16:34:52 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.497 (1.497) Loss 0.0798 (0.0798) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.066 (0.235) Loss 0.1544 (0.0951) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.139 (0.180) Loss 0.1675 (0.1190) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.066 (0.159) Loss 0.1464 (0.1247) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.250 (0.152) Loss 0.1602 (0.1325) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.034 (0.138) Loss 0.1195 (0.1316) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.118 (0.128) Loss 0.1382 (0.1327) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:34:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.063 (0.121) Loss 0.1495 (0.1350) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.254 (0.118) Loss 0.1245 (0.1348) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.040 (0.113) Loss 0.1108 (0.1338) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:01 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.049 (0.110) Loss 0.1273 (0.1322) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:02 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:35:02 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:35:02 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:35:03 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][0/256] eta 0:05:57 lr 0.000001 wd 0.0500 time 1.3958 (1.3958) loss 0.8243 (0.8243) grad_norm 0.0000 (0.0000) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:05 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][10/256] eta 0:01:18 lr 0.000001 wd 0.0500 time 0.1716 (0.3198) loss 0.8483 (0.7425) grad_norm 8.0017 (4.1114) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:07 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][20/256] eta 0:01:02 lr 0.000001 wd 0.0500 time 0.2345 (0.2660) loss 0.9123 (0.7282) grad_norm 3.5981 (4.1868) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:10 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][30/256] eta 0:00:59 lr 0.000001 wd 0.0500 time 0.2753 (0.2621) loss 0.7928 (0.7333) grad_norm 4.1669 (4.7620) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:11 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][40/256] eta 0:00:51 lr 0.000001 wd 0.0500 time 0.1567 (0.2395) loss 0.8183 (0.7410) grad_norm 4.5792 (4.6181) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:13 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][50/256] eta 0:00:46 lr 0.000001 wd 0.0500 time 0.1406 (0.2233) loss 0.7116 (0.7418) grad_norm 9.8330 (4.8923) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:15 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][60/256] eta 0:00:41 lr 0.000001 wd 0.0500 time 0.1353 (0.2121) loss 0.9191 (0.7467) grad_norm 5.9061 (5.1477) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:16 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][70/256] eta 0:00:37 lr 0.000001 wd 0.0500 time 0.1396 (0.2042) loss 0.6681 (0.7462) grad_norm 2.5210 (5.0721) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:18 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][80/256] eta 0:00:34 lr 0.000001 wd 0.0500 time 0.1438 (0.1980) loss 0.7111 (0.7477) grad_norm 7.4803 (5.2216) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:19 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][90/256] eta 0:00:32 lr 0.000001 wd 0.0500 time 0.1587 (0.1934) loss 0.7028 (0.7498) grad_norm 4.7857 (5.2217) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:21 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][100/256] eta 0:00:30 lr 0.000001 wd 0.0500 time 0.2480 (0.1943) loss 0.7581 (0.7473) grad_norm 2.8483 (5.1351) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:24 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][110/256] eta 0:00:28 lr 0.000000 wd 0.0500 time 0.2164 (0.1977) loss 0.8027 (0.7442) grad_norm 1.7251 (5.0321) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:26 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][120/256] eta 0:00:27 lr 0.000000 wd 0.0500 time 0.1909 (0.1988) loss 0.6143 (0.7408) grad_norm 4.3255 (4.9681) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:27 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][130/256] eta 0:00:24 lr 0.000000 wd 0.0500 time 0.1887 (0.1959) loss 0.6982 (0.7425) grad_norm 8.1386 (4.9412) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:29 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][140/256] eta 0:00:22 lr 0.000000 wd 0.0500 time 0.1593 (0.1933) loss 0.7113 (0.7424) grad_norm 3.1372 (4.8228) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:30 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][150/256] eta 0:00:20 lr 0.000000 wd 0.0500 time 0.1617 (0.1907) loss 0.5528 (0.7427) grad_norm 5.7226 (4.8027) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:32 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][160/256] eta 0:00:18 lr 0.000000 wd 0.0500 time 0.1713 (0.1888) loss 0.7100 (0.7433) grad_norm 3.5808 (4.7441) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:34 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][170/256] eta 0:00:16 lr 0.000000 wd 0.0500 time 0.1433 (0.1871) loss 0.7381 (0.7393) grad_norm 3.9870 (4.7184) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:35 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][180/256] eta 0:00:14 lr 0.000000 wd 0.0500 time 0.1926 (0.1864) loss 0.5971 (0.7404) grad_norm 6.6491 (4.7961) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:38 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][190/256] eta 0:00:12 lr 0.000000 wd 0.0500 time 0.2636 (0.1900) loss 0.8499 (0.7406) grad_norm 2.3209 (4.7740) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:40 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][200/256] eta 0:00:10 lr 0.000000 wd 0.0500 time 0.1522 (0.1898) loss 0.7352 (0.7410) grad_norm 9.6814 (4.8243) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:41 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][210/256] eta 0:00:08 lr 0.000000 wd 0.0500 time 0.1423 (0.1886) loss 0.7086 (0.7417) grad_norm 5.3860 (4.8673) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:43 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][220/256] eta 0:00:06 lr 0.000000 wd 0.0500 time 0.1413 (0.1872) loss 0.5682 (0.7406) grad_norm 3.6890 (4.8364) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:45 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][230/256] eta 0:00:04 lr 0.000000 wd 0.0500 time 0.1392 (0.1857) loss 0.6115 (0.7379) grad_norm 1.3407 (4.7977) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:46 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][240/256] eta 0:00:02 lr 0.000000 wd 0.0500 time 0.1322 (0.1843) loss 0.8041 (0.7393) grad_norm 6.6840 (4.8148) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:47 swin_tiny_patch4_window7_224] (main.py 222): INFO Train: [14/15][250/256] eta 0:00:01 lr 0.000000 wd 0.0500 time 0.1319 (0.1826) loss 0.8263 (0.7393) grad_norm 4.3044 (4.8162) loss_scale 2048.0000 (2048.0000) mem 921MB | |
| [2025-12-08 16:35:48 swin_tiny_patch4_window7_224] (main.py 231): INFO EPOCH 14 training takes 0:00:46 | |
| [2025-12-08 16:35:48 swin_tiny_patch4_window7_224] (utils.py 145): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_14.pth saving...... | |
| [2025-12-08 16:35:49 swin_tiny_patch4_window7_224] (utils.py 147): INFO output/swin_tiny_patch4_window7_224/default/ckpt_epoch_14.pth saved !!! | |
| [2025-12-08 16:35:51 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [0/110] Time 1.809 (1.809) Loss 0.0818 (0.0818) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:52 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [10/110] Time 0.092 (0.261) Loss 0.1542 (0.0968) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:53 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [20/110] Time 0.035 (0.188) Loss 0.1664 (0.1195) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:54 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [30/110] Time 0.055 (0.150) Loss 0.1472 (0.1249) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:55 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [40/110] Time 0.148 (0.137) Loss 0.1586 (0.1322) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [50/110] Time 0.064 (0.132) Loss 0.1194 (0.1311) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:56 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [60/110] Time 0.034 (0.119) Loss 0.1368 (0.1322) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:57 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [70/110] Time 0.115 (0.117) Loss 0.1461 (0.1344) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:58 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [80/110] Time 0.248 (0.112) Loss 0.1218 (0.1338) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:35:59 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [90/110] Time 0.079 (0.108) Loss 0.1109 (0.1328) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:36:00 swin_tiny_patch4_window7_224] (main.py 271): INFO Test: [100/110] Time 0.037 (0.104) Loss 0.1252 (0.1311) Acc@1 100.000 (100.000) Acc@5 100.000 (100.000) Mem 921MB | |
| [2025-12-08 16:36:00 swin_tiny_patch4_window7_224] (main.py 278): INFO * Acc@1 100.000 Acc@5 100.000 | |
| [2025-12-08 16:36:00 swin_tiny_patch4_window7_224] (main.py 165): INFO Accuracy of the network on the 1760 test images: 100.0% | |
| [2025-12-08 16:36:00 swin_tiny_patch4_window7_224] (main.py 167): INFO Max accuracy: 100.00% | |
| [2025-12-08 16:36:00 swin_tiny_patch4_window7_224] (main.py 171): INFO Training time 0:17:43 | |