Jinhuiye's picture
Add files using upload-large-folder tool
9c312b7 verified
run_id: 1025_libero_all_qwengroot
run_root_dir: ./results/Checkpoints
seed: 42
trackers:
- jsonl
- wandb
wandb_entity: jinhuiye
wandb_project: StarVLA_Libero
is_debug: false
framework:
name: QwenGR00T
qwenvl:
base_vlm: ./playground/Pretrained_models/Qwen2.5-VL-3B-Instruct
attn_implementation: flash_attention_2
vl_hidden_dim: 2048
dino:
dino_backbone: dinov2_vits14
action_model:
action_model_type: DiT-B
action_hidden_dim: 1024
hidden_size: 1024
add_pos_embed: true
max_seq_len: 1024
action_dim: 7
state_dim: 7
future_action_window_size: 7
action_horizon: 8
past_action_window_size: 0
repeated_diffusion_steps: 8
noise_beta_alpha: 1.5
noise_beta_beta: 1.0
noise_s: 0.999
num_timestep_buckets: 1000
num_inference_timesteps: 4
num_target_vision_tokens: 32
diffusion_model_cfg:
cross_attention_dim: 2048
dropout: 0.2
final_dropout: true
interleave_self_attention: true
norm_type: ada_norm
num_layers: 16
output_dim: 1024
positional_embeddings: null
reduce_in_full_precision: true
datasets:
vlm_data:
dataset_py: vlm_datasets
dataformat: llava_json
dataset_use: asv2_conversation_en,asv2_detailed_description_en,asv2_region_captioning_en,coco_internvl_longcap_en,coco_karpathy_train_567_en,coco_negative_gpt4o_en,coco_poetry_zh,coco_rem_en_zh,cocorem_exist_yorn_en,cocotextv2_en,cocotextv2_gpt4o_en,okvqa_en,refcoco_grounding_aug_en,refcoco_grounding_en,tallyqa_coco_en,toloka_grounding_aug_en,vqav2_en,vsr_en
eval_dataset: aokvqa_cauldron_llava_format
data_flatten: false
base_interval: 2
max_pixels: 12845056
min_pixels: 3136
model_max_length: 2048
model_type: qwen2.5vl
per_device_batch_size: 3
vla_data:
dataset_py: lerobot_datasets
data_root_dir: playground/Datasets/LEROBOT_LIBERO_DATA
data_mix: libero_all
action_type: delta_qpos
CoT_prompt: Your task is {instruction}. To identify the key objects for your task.
Locate their bounding boxes in [x1,y1,x2,y2] format.
CoT_answer: bbox
default_image_resolution:
- 3
- 224
- 224
per_device_batch_size: 16
load_all_data_for_training: true
obs:
- image_0
trainer:
epochs: 100
max_train_steps: 80000
num_warmup_steps: 5000
save_interval: 10000
eval_interval: 1000
learning_rate:
base: 3.0e-05
qwen_vl_interface: 1.0e-05
action_model: 0.0001
lr_scheduler_type: cosine_with_min_lr
scheduler_specific_kwargs:
min_lr: 1.0e-06
freeze_modules: true
loss_scale:
vla: 1.0
vlm: 0.1
max_grad_norm: 1.0
warmup_ratio: 0.1
weight_decay: 0.0
logging_frequency: 10
gradient_clipping: 1.0
gradient_accumulation_steps: 1
optimizer:
name: AdamW
betas:
- 0.9
- 0.95
eps: 1.0e-08
weight_decay: 1.0e-08
is_resume: false
resume_epoch: null
resume_step: null
enable_gradient_checkpointing: true
enable_mixed_precision_training: true
is_resume: false
output_dir: ./results/Checkpoints/1025_libero_all_qwengroot