run_id: 1008_qwenLfm_briage run_root_dir: ./results/Checkpoints seed: 42 trackers: - jsonl - wandb wandb_entity: jinhuiye wandb_project: InternM1 is_debug: false framework: name: QwenGR00T qwenvl: base_vlm: StarVLA/Qwen2.5-VL-3B-Instruct-Action attn_implementation: flash_attention_2 vl_hidden_dim: 2048 dino: dino_backbone: dinov2_vits14 action_model: action_model_type: DiT-L hidden_size: 1024 add_pos_embed: true max_seq_len: 1024 action_dim: 7 state_dim: 7 future_action_window_size: 15 action_horizon: 16 past_action_window_size: 0 repeated_diffusion_steps: 8 noise_beta_alpha: 1.5 noise_beta_beta: 1.0 noise_s: 0.999 num_timestep_buckets: 1000 num_inference_timesteps: 4 num_target_vision_tokens: 32 diffusion_model_cfg: cross_attention_dim: 2048 dropout: 0.2 final_dropout: true interleave_self_attention: true norm_type: ada_norm num_layers: 16 output_dim: 1024 positional_embeddings: null action_hidden_dim: 2048 datasets: vlm_data: dataset_py: vlm_datasets dataformat: llava_json dataset_use: aokvqa_cauldron_llava_format,sharegpt4v_coco,sharegpt4v_knowledge,sharegpt4v_llava,sharegpt4v_sam,asv2_conversation_en,asv2_detailed_description_en,asv2_region_captioning_en,coco_internvl_longcap_en,coco_karpathy_train_567_en,coco_negative_gpt4o_en,coco_poetry_zh,coco_rem_en_zh,cocorem_exist_yorn_en,cocotextv2_en,cocotextv2_gpt4o_en,okvqa_en,refcoco_grounding_aug_en,refcoco_grounding_en,tallyqa_coco_en,toloka_grounding_aug_en,vqav2_en,vsr_en eval_dataset: aokvqa_cauldron_llava_format data_flatten: false base_interval: 2 max_pixels: 50176 min_pixels: 784 model_max_length: 2048 model_type: qwen2.5vl per_device_batch_size: 3 vla_data: dataset_py: lerobot_datasets data_root_dir: playground/Datasets/OXE_LEROBOT data_mix: bridge action_type: delta_ee CoT_prompt: Your task is {instruction}. To identify the key objects for your task. Locate their bounding boxes in [x1,y1,x2,y2] format. CoT_answer: bbox default_image_resolution: - 3 - 224 - 224 per_device_batch_size: 16 load_all_data_for_training: true obs: - image_0 image_size: - 224 - 224 trainer: epochs: 100 max_train_steps: 100000 num_warmup_steps: 10000 save_interval: 5000 eval_interval: 1000 learning_rate: base: 3.0e-05 qwen_vl_interface: 1.0e-05 action_model: 0.0001 lr_scheduler_type: cosine_with_min_lr scheduler_specific_kwargs: min_lr: 5.0e-07 freeze_modules: true loss_scale: vla: 1.0 vlm: 0.1 repeated_diffusion_steps: 4 max_grad_norm: 1.0 warmup_ratio: 0.1 weight_decay: 0.0 logging_frequency: 10 gradient_clipping: 1.0 gradient_accumulation_steps: 1 optimizer: name: AdamW betas: - 0.9 - 0.95 eps: 1.0e-08 weight_decay: 1.0e-08 is_resume: false resume_epoch: null resume_step: null enable_gradient_checkpointing: true enable_mixed_precision_training: true is_resume: false output_dir: ./results/Checkpoints/1008_qwenLfm_briage