--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9325301204819277 - name: Recall type: recall value: 0.9374663556432801 - name: F1 type: f1 value: 0.9349917229654156 - name: Accuracy type: accuracy value: 0.9840466238888562 --- # bert-base-cased-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0650 - Precision: 0.9325 - Recall: 0.9375 - F1: 0.9350 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2346 | 1.0 | 878 | 0.0722 | 0.9168 | 0.9217 | 0.9192 | 0.9795 | | 0.0483 | 2.0 | 1756 | 0.0618 | 0.9299 | 0.9370 | 0.9335 | 0.9837 | | 0.0262 | 3.0 | 2634 | 0.0650 | 0.9325 | 0.9375 | 0.9350 | 0.9840 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1