nielsr HF Staff commited on
Commit
f9a4a5c
·
verified ·
1 Parent(s): 80e4176

Improve model card: Update pipeline tag, license, and add comprehensive details from GitHub

Browse files

This pull request significantly enhances the RedDino model card by:

- **Updating Metadata**:
* Correcting the `pipeline_tag` from `feature-extraction` to `image-feature-extraction` to more accurately reflect the model's functionality and improve discoverability on the Hugging Face Hub.
* Updating the `license` from `cc-by-4.0` to `cc-by-nc-4.0`, as specified in the model's `config.json`, ensuring the stated license is precise for the artifact.

- **Enriching Content**:
* Adding a prominent link to the [official GitHub repository](https://github.com/Snarci/RedDino) for easy access to the source code and additional resources.
* Integrating detailed sections from the GitHub README, including **Model Variants**, **Benchmark Results**, and **Highlights**, providing a much richer overview of RedDino's architecture, performance, and key innovations.
* Updating the main title of the model card to align with the paper's title for better clarity and context.

These updates aim to provide a more complete, accurate, and user-friendly resource for researchers and developers interested in RedDino.

Files changed (1) hide show
  1. README.md +110 -68
README.md CHANGED
@@ -1,87 +1,76 @@
1
  ---
2
- license: cc-by-4.0
3
- tags:
4
- - red-blood-cells
5
- - hematology
6
- - medical-imaging
7
- - vision-transformer
8
- - dino
9
- - dinov2
10
- - feature-extraction
11
- - foundation-model
12
- library_name: timm
13
  datasets:
14
- - Elsafty
15
- - Chula
16
- - DSE
17
- pipeline_tag: feature-extraction
 
 
 
 
 
 
 
 
 
 
 
18
  model-index:
19
- - name: RedDino-large
20
- results:
21
- - task:
22
- type: image-classification
23
- name: RBC Shape Classification
24
- dataset:
25
- name: Elsafty
26
- type: Classification
27
- metrics:
28
- - type: Weighted F1
29
- value: 88.5
30
- - type: Balanced Accuracy
31
- value: 89.1
32
- - type: Accuracy
33
- value: 88.4
34
- - task:
35
- type: image-classification
36
- name: RBC Shape Classification
37
- dataset:
38
- name: Chula
39
- type: Classification
40
- metrics:
41
- - type: Weighted F1
42
- value: 83.9
43
- - type: Balanced Accuracy
44
- value: 79.0
45
- - type: Accuracy
46
- value: 85.0
47
- - task:
48
- type: image-classification
49
- name: RBC Shape Classification
50
- dataset:
51
- name: DSE
52
- type: Classification
53
- metrics:
54
- - type: Weighted F1
55
- value: 86.6
56
- - type: Balanced Accuracy
57
- value: 60.1
58
- - type: Accuracy
59
- value: 86.6
60
  ---
61
- # RedDino-large
62
 
63
- **RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis.
64
- It leverages a tailored version of the **DINOv2** framework, trained on a meticulously curated dataset of **1.25 million RBC images** from diverse acquisition modalities and sources.
65
- This model excels at extracting robust, general-purpose features for downstream hematology tasks such as **shape classification**, **morphological subtype recognition**, and **batch-effect–robust analysis**.
 
 
66
 
67
  Unlike general-purpose models pretrained on natural images, RedDino incorporates hematology-specific augmentations, architectural tweaks, and RBC-tailored data preprocessing, enabling **state-of-the-art performance** on multiple RBC benchmarks.
68
 
69
  > 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
70
  > 🏥 University of Cagliari & Helmholtz Munich
71
- > 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
 
72
 
73
  ---
74
 
75
  ## Model Details
76
 
77
- - **Architecture:** ViT-large, patch size 14
78
- - **SSL framework:** DINOv2 (customized for RBC morphology)
79
- - **Pretraining dataset:** Curated RBC images from 18 datasets (multiple modalities and sources)
80
- - **Embedding size:** 1024
81
- - **Intended use:** RBC morphology classification, feature extraction, batch-effect–robust analysis
82
  Notes:
83
- - RBC-specific training strategy including removal of KoLeo regularizer and Sinkhorn-Knopp centering.
84
- - Training on smear patches (not only single cells) to enhance cross-source generalization.
 
85
  ## Example Usage
86
  ```python
87
  from PIL import Image
@@ -106,6 +95,53 @@ input_tensor = transform(image).unsqueeze(0).to(device)
106
  with torch.no_grad():
107
  embedding = model(input_tensor)
108
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  ## 📝 Citation
110
 
111
  If you use this model, please cite the following paper:
@@ -125,3 +161,9 @@ Preprint: arXiv:2508.08180. https://arxiv.org/abs/2508.08180
125
  url={https://arxiv.org/abs/2508.08180},
126
  }
127
  ```
 
 
 
 
 
 
 
1
  ---
 
 
 
 
 
 
 
 
 
 
 
2
  datasets:
3
+ - Elsafty
4
+ - Chula
5
+ - DSE
6
+ library_name: timm
7
+ license: cc-by-nc-4.0
8
+ pipeline_tag: image-feature-extraction
9
+ tags:
10
+ - red-blood-cells
11
+ - hematology
12
+ - medical-imaging
13
+ - vision-transformer
14
+ - dino
15
+ - dinov2
16
+ - feature-extraction
17
+ - foundation-model
18
  model-index:
19
+ - name: RedDino-large
20
+ results:
21
+ - task:
22
+ type: image-classification
23
+ name: RBC Shape Classification
24
+ dataset:
25
+ name: Elsafty
26
+ type: Classification
27
+ metrics:
28
+ - type: Weighted F1
29
+ value: 88.5
30
+ - type: Balanced Accuracy
31
+ value: 89.1
32
+ - type: Accuracy
33
+ value: 88.4
34
+ - type: Weighted F1
35
+ value: 83.9
36
+ - type: Balanced Accuracy
37
+ value: 79.0
38
+ - type: Accuracy
39
+ value: 85.0
40
+ - type: Weighted F1
41
+ value: 86.6
42
+ - type: Balanced Accuracy
43
+ value: 60.1
44
+ - type: Accuracy
45
+ value: 86.6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  ---
 
47
 
48
+ # RedDino: A Foundation Model for Red Blood Cell Analysis
49
+
50
+ **RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis, as presented in the paper [RedDino: A foundation model for red blood cell analysis](https://arxiv.org/abs/2508.08180).
51
+
52
+ It leverages a tailored version of the **DINOv2** framework, trained on a meticulously curated dataset of **1.25 million RBC images** from diverse acquisition modalities and sources. This model excels at extracting robust, general-purpose features for downstream hematology tasks such as **shape classification**, **morphological subtype recognition**, and **batch-effect–robust analysis**.
53
 
54
  Unlike general-purpose models pretrained on natural images, RedDino incorporates hematology-specific augmentations, architectural tweaks, and RBC-tailored data preprocessing, enabling **state-of-the-art performance** on multiple RBC benchmarks.
55
 
56
  > 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
57
  > 🏥 University of Cagliari & Helmholtz Munich
58
+ > 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
59
+ > 💻 Code: [https://github.com/Snarci/RedDino](https://github.com/Snarci/RedDino)
60
 
61
  ---
62
 
63
  ## Model Details
64
 
65
+ - **Architecture:** ViT-large, patch size 14
66
+ - **SSL framework:** DINOv2 (customized for RBC morphology)
67
+ - **Pretraining dataset:** Curated RBC images from 18 datasets (multiple modalities and sources)
68
+ - **Embedding size:** 1024
69
+ - **Intended use:** RBC morphology classification, feature extraction, batch-effect–robust analysis
70
  Notes:
71
+ - RBC-specific training strategy including removal of KoLeo regularizer and Sinkhorn-Knopp centering.
72
+ - Training on smear patches (not only single cells) to enhance cross-source generalization.
73
+
74
  ## Example Usage
75
  ```python
76
  from PIL import Image
 
95
  with torch.no_grad():
96
  embedding = model(input_tensor)
97
  ```
98
+
99
+ ## Model Variants
100
+
101
+ RedDino comes in three sizes to suit different computational requirements and performance needs:
102
+
103
+ | Model Variant | Embedding Size | Parameters | Usage |
104
+ |---------------|----------------|------------|--------|
105
+ | **RedDino-small** | 384 | 22M | `timm.create_model("hf_hub:Snarcy/RedDino-small", pretrained=True)` |
106
+ | **RedDino-base** | 768 | 86M | `timm.create_model("hf_hub:Snarcy/RedDino-base", pretrained=True)` |
107
+ | **RedDino-large** | 1024 | 304M | `timm.create_model("hf_hub:Snarcy/RedDino-large", pretrained=True)` |
108
+
109
+ Choose the variant that best fits your computational budget and performance requirements. Larger models generally provide richer feature representations at the cost of increased computational overhead.
110
+
111
+ ---
112
+
113
+ ## Benchmark Results
114
+
115
+ RedDino was benchmarked on major RBC classification datasets—including Elsafty, Chula, and DSE—outperforming state-of-the-art baselines such as ResNet50, DinoBloom, and DINOv2.
116
+
117
+ | Model | Dataset | Metric | Linear Probing (wF1) | 1-NN (wF1) | 20-NN (wF1) |
118
+ |-------------------|-----------|-------------|----------------------|------------|-------------|
119
+ | ResNet50 | Elsafty | Weighted F1 | 77.6 ± 8.1 | 64.3 ± 4.8 | 66.2 ± 4.9 |
120
+ | DinoBloom-S | Elsafty | Weighted F1 | 83.2 ± 8.2 | 73.1 ± 5.1 | 76.5 ± 4.2 |
121
+ | DINOv2 (small) | Elsafty | Weighted F1 | 82.1 ± 8.2 | 73.5 ± 4.8 | 77.2 ± 4.6 |
122
+ | RedDino small | Elsafty | Weighted F1 | 86.0 ± 7.0 | 76.8 ± 4.9 | 80.0 ± 4.5 |
123
+ | RedDino base | Elsafty | Weighted F1 | 88.1 ± 4.9 | 78.8 ± 3.6 | 82.6 ± 2.8 |
124
+ | RedDino large | Elsafty | Weighted F1 | 88.5 ± 5.5 | 78.5 ± 4.6 | 81.6 ± 4.7 |
125
+
126
+ On Chula and DSE datasets, RedDino consistently surpassed all other models in feature quality (linear probing) with average improvements of 2–4% over prior approaches in key metrics.
127
+
128
+ ---
129
+
130
+ ## Highlights
131
+
132
+ - **Foundation model** for RBC analysis trained on the largest available multi-source RBC image set: 1.25M+ images, using advanced CellPose-based instance segmentation and patch extraction.
133
+ - **DINOv2-based self-supervised learning** for label-efficient pretraining and robust, transferable features.
134
+ - **Model architecture and key innovations**:
135
+ - Patch-based training (224×224 px) shown to outperform single-cell training.
136
+ - Novel data augmentation via Albumentations (32 pixel-level strategies).
137
+ - Removal of the Koleo regularizer and adoption of Sinkhorn-Knopp centering for improved representation in RBC-specific domains.
138
+ - Suite of models (small, base, large) covering 22M–304M parameters.
139
+ - **Generalization**: Strong adaptation across varied protocols, microscopes, and imaging sites. Demonstrated resistance to batch effects and out-of-domain variance.
140
+ - **Interpretability tools**: PCA/UMAP visualizations reveal clustering by phenotype and batch, distinguishing abnormal cells (e.g., malaria, echinocytes).
141
+ - **Easy deployment**: Models and code are available on [GitHub](https://github.com/Snarci/RedDino) and [Hugging Face](https://huggingface.co/collections/Snarcy/reddino-689a13e29241d2e5690202fc).
142
+
143
+ ---
144
+
145
  ## 📝 Citation
146
 
147
  If you use this model, please cite the following paper:
 
161
  url={https://arxiv.org/abs/2508.08180},
162
  }
163
  ```
164
+
165
+ ---
166
+
167
+ ## Summary
168
+
169
+ RedDino is the first family of foundation models tailored for comprehensive red blood cell image analysis, using large-scale self-supervised learning to set new performance benchmarks and generalization standards for computational hematology. Models and pretrained weights are available for research and practical deployment.