Upload pipeline.py
Browse files- pipeline.py +66 -0
pipeline.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple, Union
|
| 2 |
+
from diffusers import DiffusionPipeline, ImagePipelineOutput, randn_tensor
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class DDPMConditionalPipeline(DiffusionPipeline):
|
| 8 |
+
model_cpu_offload_seq = "unet"
|
| 9 |
+
|
| 10 |
+
def __init__(self, unet, scheduler):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
| 13 |
+
|
| 14 |
+
@torch.no_grad()
|
| 15 |
+
def __call__(
|
| 16 |
+
self,
|
| 17 |
+
label,
|
| 18 |
+
batch_size: int = 1,
|
| 19 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 20 |
+
num_inference_steps: int = 1000,
|
| 21 |
+
output_type: Optional[str] = "pil",
|
| 22 |
+
return_dict: bool = True,
|
| 23 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
| 24 |
+
# Sample gaussian noise to begin loop
|
| 25 |
+
if isinstance(self.unet.config.sample_size, int):
|
| 26 |
+
image_shape = (
|
| 27 |
+
batch_size,
|
| 28 |
+
self.unet.config.in_channels,
|
| 29 |
+
self.unet.config.sample_size,
|
| 30 |
+
self.unet.config.sample_size,
|
| 31 |
+
)
|
| 32 |
+
else:
|
| 33 |
+
image_shape = (
|
| 34 |
+
batch_size,
|
| 35 |
+
self.unet.config.in_channels,
|
| 36 |
+
*self.unet.config.sample_size,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
if self.device.type == "mps":
|
| 40 |
+
# randn does not work reproducibly on mps
|
| 41 |
+
image = randn_tensor(image_shape, generator=generator)
|
| 42 |
+
image = image.to(self.device)
|
| 43 |
+
else:
|
| 44 |
+
image = randn_tensor(image_shape, generator=generator, device=self.device)
|
| 45 |
+
|
| 46 |
+
# set step values
|
| 47 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
| 48 |
+
|
| 49 |
+
for t in self.progress_bar(self.scheduler.timesteps):
|
| 50 |
+
# 1. predict noise model_output
|
| 51 |
+
model_output = self.unet(image, t, label).sample
|
| 52 |
+
|
| 53 |
+
# 2. compute previous image: x_t -> x_t-1
|
| 54 |
+
image = self.scheduler.step(
|
| 55 |
+
model_output, t, image, generator=generator
|
| 56 |
+
).prev_sample
|
| 57 |
+
|
| 58 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 59 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
| 60 |
+
if output_type == "pil":
|
| 61 |
+
image = self.numpy_to_pil(image)
|
| 62 |
+
|
| 63 |
+
if not return_dict:
|
| 64 |
+
return (image,)
|
| 65 |
+
|
| 66 |
+
return ImagePipelineOutput(images=image)
|