Upload 3 files
Browse files- README.md +131 -3
- adapter_config.json +37 -0
- adapter_model.safetensors +3 -0
README.md
CHANGED
|
@@ -1,3 +1,131 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- code
|
| 5 |
+
library_name: peft
|
| 6 |
+
tags:
|
| 7 |
+
- code-search
|
| 8 |
+
- text-embeddings
|
| 9 |
+
- decoder-only
|
| 10 |
+
- supervised-contrastive-learning
|
| 11 |
+
- codegemma
|
| 12 |
+
- llm2vec
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
## 📖 Are Decoder-Only Large Language Models the Silver Bullet for Code Search?
|
| 16 |
+
|
| 17 |
+
This model is an official artifact from our research paper: **"[Are Decoder-Only Large Language Models the Silver Bullet for Code Search?](https://arxiv.org/abs/2410.22240)"**.
|
| 18 |
+
|
| 19 |
+
In this work, we conduct a large-scale systematic evaluation of decoder-only Large Language Models for the task of code search and present a set of effective fine-tuning and optimization strategies.
|
| 20 |
+
|
| 21 |
+
For complete details on all our experiments, to reproduce the full training/evaluation pipeline, or to use other models from the paper, please visit our official GitHub repository:
|
| 22 |
+
|
| 23 |
+
➡️ **[GitHub: Georgepitt/DecoderLLMs-CodeSearch](https://github.com/Georgepitt/DecoderLLMs-CodeSearch)**
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
# Model Card: DCS-CodeGemma-7b-it-SupCon-CSN
|
| 28 |
+
|
| 29 |
+
## 📜 Model Description
|
| 30 |
+
|
| 31 |
+
This is a PEFT adapter for the **`google/codegemma-7b-it`** model, fine-tuned for the task of **Code Search** as part of the research mentioned above.
|
| 32 |
+
|
| 33 |
+
The model was trained using the **Supervised Contrastive Learning** method proposed in the [llm2vec](https://github.com/McGill-NLP/llm2vec) framework, designed to generate high-quality vector embeddings for code snippets.
|
| 34 |
+
|
| 35 |
+
## 🔬 Model Performance & Reproducibility
|
| 36 |
+
|
| 37 |
+
The table below provides details about this model, its corresponding results in our paper, and how to reproduce the evaluation.
|
| 38 |
+
|
| 39 |
+
| Attribute | Details |
|
| 40 |
+
| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------ |
|
| 41 |
+
| **Base Model** | `google/codegemma-7b-it` |
|
| 42 |
+
| **Fine-tuning Method** | Supervised Contrastive Learning via `llm2vec` |
|
| 43 |
+
| **Corresponds to Paper** | Section IV, Table VI |
|
| 44 |
+
| **Evaluation Script** | [CSN_Test_Finetuning_Decoder_Model.py](https://github.com/Georgepitt/DecoderLLMs-CodeSearch/blob/main/Fine-tuning/CSN_Test_Finetuning_Decoder_Model.py),<br>[CoSQA_Plus_Test_Finetuning_Decoder_Model copy.py](https://github.com/Georgepitt/DecoderLLMs-CodeSearch/blob/main/Fine-tuning/CoSQA_Plus_Test_Finetuning_Decoder_Model%20copy.py) |
|
| 45 |
+
| **Prerequisite Model** | This model must be loaded on top of an MNTP pre-trained model. E.g., `[SYSUSELab/DCS-CodeGemma-7b-It-MNTP]` |
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## 🚀 How to Use (with `llm2vec`)
|
| 50 |
+
|
| 51 |
+
For best results, we strongly recommend using the official `llm2vec` wrapper to load and use this model.
|
| 52 |
+
|
| 53 |
+
**1. Install Dependencies**
|
| 54 |
+
```bash
|
| 55 |
+
pip install llm2vec transformers torch peft accelerate
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
**2. Example Usage**
|
| 59 |
+
|
| 60 |
+
> **Important**: The `llm2vec` supervised contrastive (SupCon) models are fine-tuned on top of **MNTP (Masked Next Token Prediction)** models. Therefore, loading requires first merging the MNTP weights before loading the SupCon adapter.
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
import torch
|
| 64 |
+
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
| 65 |
+
from peft import PeftModel
|
| 66 |
+
from llm2vec import LLM2Vec
|
| 67 |
+
|
| 68 |
+
# --- 1. Define Model IDs ---
|
| 69 |
+
base_model_id = "google/codegemma-7b-it"
|
| 70 |
+
mntp_model_id = "[SYSUSELab/DCS-CodeGemma-7b-It-MNTP]"
|
| 71 |
+
supcon_model_id = "[SYSUSELab/DCS-CodeGemma-7b-It-SupCon-CSN]"
|
| 72 |
+
|
| 73 |
+
# --- 2. Load Base Model and MNTP Adapter ---
|
| 74 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
| 75 |
+
config = AutoConfig.from_pretrained(base_model_id, trust_remote_code=True)
|
| 76 |
+
model = AutoModel.from_pretrained(
|
| 77 |
+
base_model_id,
|
| 78 |
+
trust_remote_code=True,
|
| 79 |
+
config=config,
|
| 80 |
+
torch_dtype=torch.bfloat16,
|
| 81 |
+
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
| 82 |
+
)
|
| 83 |
+
model = PeftModel.from_pretrained(model, mntp_model_id)
|
| 84 |
+
model = model.merge_and_unload()
|
| 85 |
+
|
| 86 |
+
# --- 3. Load the Supervised (this model) Adapter on top of the MNTP-merged model ---
|
| 87 |
+
model = PeftModel.from_pretrained(model, supcon_model_id)
|
| 88 |
+
|
| 89 |
+
# --- 4. Use the LLM2Vec Wrapper for Encoding ---
|
| 90 |
+
l2v = LLM2Vec(model, tokenizer, pooling_mode="mean", max_length=512)
|
| 91 |
+
|
| 92 |
+
queries = ["how to read a file in Python?"]
|
| 93 |
+
code_snippets = ["with open('file.txt', 'r') as f:\n content = f.read()"]
|
| 94 |
+
query_embeddings = l2v.encode(queries)
|
| 95 |
+
code_embeddings = l2v.encode(code_snippets)
|
| 96 |
+
|
| 97 |
+
print("Query Embedding Shape:", query_embeddings.shape)
|
| 98 |
+
# This usage example is adapted from the official llm2vec repository. Credits to the original authors.
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
---
|
| 102 |
+
|
| 103 |
+
## 📄 Citation
|
| 104 |
+
|
| 105 |
+
If you use our model or work in your research, please cite our paper. As our method is built upon `llm2vec`, please also cite their foundational work.
|
| 106 |
+
|
| 107 |
+
**Our Paper:**
|
| 108 |
+
* **Paper Link:** [Are Decoder-Only Large Language Models the Silver Bullet for Code Search?](https://arxiv.org/abs/2410.22240)
|
| 109 |
+
* **GitHub:** [https://github.com/Georgepitt/DecoderLLMs-CodeSearch](https://github.com/Georgepitt/DecoderLLMs-CodeSearch)
|
| 110 |
+
* **BibTeX:**
|
| 111 |
+
```bibtex
|
| 112 |
+
@article{chen2024decoder,
|
| 113 |
+
title={Are Decoder-Only Large Language Models the Silver Bullet for Code Search?},
|
| 114 |
+
author={Chen, Yuxuan and Liu, Mingwei and Ou, Guangsheng and Li, Anji and Dai, Dekun and Wang, Yanlin and Zheng, Zibin},
|
| 115 |
+
journal={arXiv preprint arXiv:2410.22240},
|
| 116 |
+
year={2024}
|
| 117 |
+
}
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
**llm2vec (Foundational Work):**
|
| 121 |
+
* **Paper Link:** [LLM2Vec: Large Language Models Are Good Contextual Text Encoders](https://arxiv.org/abs/2404.05961)
|
| 122 |
+
* **GitHub:** [https://github.com/McGill-NLP/llm2vec](https://github.com/McGill-NLP/llm2vec)
|
| 123 |
+
* **BibTeX:**
|
| 124 |
+
```bibtex
|
| 125 |
+
@article{vaishaal2024llm2vec,
|
| 126 |
+
title={LLM2Vec: Large Language Models Are Good Contextual Text Encoders},
|
| 127 |
+
author={Vaishaal, Shankar and Bansal, Mohit and Arora, Simran},
|
| 128 |
+
journal={arXiv preprint arXiv:2404.05961},
|
| 129 |
+
year={2024}
|
| 130 |
+
}
|
| 131 |
+
```
|
adapter_config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": {
|
| 4 |
+
"base_model_class": "GemmaBiModel",
|
| 5 |
+
"parent_library": "llm2vec.models.bidirectional_gemma"
|
| 6 |
+
},
|
| 7 |
+
"base_model_name_or_path": "google/codegemma-7b-it",
|
| 8 |
+
"bias": "none",
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 32,
|
| 17 |
+
"lora_dropout": 0.05,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 16,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"k_proj",
|
| 27 |
+
"gate_proj",
|
| 28 |
+
"q_proj",
|
| 29 |
+
"down_proj",
|
| 30 |
+
"up_proj",
|
| 31 |
+
"v_proj",
|
| 32 |
+
"o_proj"
|
| 33 |
+
],
|
| 34 |
+
"task_type": null,
|
| 35 |
+
"use_dora": false,
|
| 36 |
+
"use_rslora": false
|
| 37 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ad528a80f6862ab5c068989d2194e2dade5f427d25962def38d345f39a21946
|
| 3 |
+
size 100058184
|