Upload folder using huggingface_hub
Browse files- consolidated.safetensors +3 -0
- convert_voxtral_hf_to_mistral.py +215 -0
- params.json +236 -0
consolidated.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5694e04fc45f53436051c68f77f08b7d5379b72788f83bcd5883e1868d3dfca3
|
| 3 |
+
size 6141906040
|
convert_voxtral_hf_to_mistral.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
import argparse
|
| 16 |
+
import gc
|
| 17 |
+
import json
|
| 18 |
+
import os
|
| 19 |
+
import re
|
| 20 |
+
|
| 21 |
+
from safetensors.torch import save_file
|
| 22 |
+
from safetensors.torch import safe_open
|
| 23 |
+
from huggingface_hub import snapshot_download
|
| 24 |
+
|
| 25 |
+
from transformers import VoxtralConfig
|
| 26 |
+
|
| 27 |
+
# fmt: off
|
| 28 |
+
STATE_DICT_MAPPING = {
|
| 29 |
+
r"^language_model\.lm_head": r"output",
|
| 30 |
+
r"^language_model\.model\.norm": r"norm",
|
| 31 |
+
r"^language_model\.model\.embed_tokens": r"tok_embeddings",
|
| 32 |
+
r"^language_model\.model\.layers\.(\d+)\.input_layernorm": r"layers.\1.attention_norm",
|
| 33 |
+
r"^language_model\.model\.layers\.(\d+)\.post_attention_layernorm": r"layers.\1.ffn_norm",
|
| 34 |
+
r"^language_model\.model\.layers\.(\d+)\.self_attn\.(q|k|v|o)_proj": r"layers.\1.attention.w\2",
|
| 35 |
+
r"^language_model\.model\.layers\.(\d+)\.mlp\.gate_proj": r"layers.\1.feed_forward.w1",
|
| 36 |
+
r"^language_model\.model\.layers\.(\d+)\.mlp\.down_proj": r"layers.\1.feed_forward.w2",
|
| 37 |
+
r"^language_model\.model\.layers\.(\d+)\.mlp\.up_proj": r"layers.\1.feed_forward.w3",
|
| 38 |
+
r"language_model.model.embed_tokens": r"tok_embeddings",
|
| 39 |
+
r"audio_tower.conv1": r"mm_whisper_embeddings.whisper_encoder.conv_layers.0" ,
|
| 40 |
+
r"audio_tower.conv2": r"mm_whisper_embeddings.whisper_encoder.conv_layers.1" ,
|
| 41 |
+
r"audio_tower.layer_norm": r"mm_whisper_embeddings.whisper_encoder.transformer.norm" ,
|
| 42 |
+
r"audio_tower.layers.(\d+).self_attn.(q|k|v)_proj": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.attention.w\2" ,
|
| 43 |
+
r"audio_tower.layers.(\d+).self_attn.out_proj": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.attention.wo" ,
|
| 44 |
+
r"audio_tower.layers.(\d+).self_attn_layer_norm": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.attention_norm" ,
|
| 45 |
+
r"audio_tower.layers.(\d+).fc(\d+)": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.feed_forward.w\2" ,
|
| 46 |
+
r"audio_tower.layers.(\d+).final_layer_norm": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.ffn_norm" ,
|
| 47 |
+
r"multi_modal_projector.linear_1": r"mm_whisper_embeddings.audio_language_projection.0" ,
|
| 48 |
+
r"multi_modal_projector.linear_2": r"mm_whisper_embeddings.audio_language_projection.2" ,
|
| 49 |
+
}
|
| 50 |
+
# fmt: on
|
| 51 |
+
|
| 52 |
+
SKIP_KEYS = ["audio_tower.embed_positions.weight"]
|
| 53 |
+
|
| 54 |
+
def add_quantization_config(config, hf_config: VoxtralConfig):
|
| 55 |
+
quantization_config = hf_config.quantization_config
|
| 56 |
+
mistral_ignore = [] # keys to ignore in the quantization config
|
| 57 |
+
for hf_key in quantization_config["ignore"]:
|
| 58 |
+
mistral_key = map_hf_key_to_mistral(hf_key)
|
| 59 |
+
mistral_ignore.append(mistral_key)
|
| 60 |
+
quantization_config["ignore"] = mistral_ignore
|
| 61 |
+
config["quantization"] = quantization_config
|
| 62 |
+
|
| 63 |
+
return config
|
| 64 |
+
|
| 65 |
+
def map_hf_key_to_mistral(hf_key):
|
| 66 |
+
"""Map a key from HF format to Mistral format"""
|
| 67 |
+
for pattern, replacement in STATE_DICT_MAPPING.items():
|
| 68 |
+
new_key, n_replace = re.subn(pattern, replacement, hf_key)
|
| 69 |
+
if n_replace > 0:
|
| 70 |
+
return new_key.replace("weight_scale", "qscale_weight")
|
| 71 |
+
|
| 72 |
+
# If no mapping found, return the original key
|
| 73 |
+
return hf_key.replace("weight_scale", "qscale_weight")
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def permute_for_mistral_rope(tensor, n_heads, dim1, dim2):
|
| 77 |
+
"""Reverse the ROPE permutation to get back to Mistral format."""
|
| 78 |
+
tensor = tensor.view(n_heads, 2, dim1 // n_heads // 2, dim2)
|
| 79 |
+
tensor = tensor.transpose(1, 2)
|
| 80 |
+
tensor = tensor.reshape(dim1, dim2)
|
| 81 |
+
return tensor
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def convert_state_dict(hf_state_dict, config):
|
| 85 |
+
"""Convert HF Voxtral state dict to Mistral format"""
|
| 86 |
+
mistral_dict = {}
|
| 87 |
+
|
| 88 |
+
num_attention_heads = config["n_heads"]
|
| 89 |
+
hidden_size = config["dim"]
|
| 90 |
+
head_dim = config["head_dim"]
|
| 91 |
+
num_key_value_heads = config["n_kv_heads"]
|
| 92 |
+
key_value_dim = head_dim * num_key_value_heads
|
| 93 |
+
query_dim = head_dim * num_attention_heads
|
| 94 |
+
|
| 95 |
+
for hf_key, tensor in hf_state_dict.items():
|
| 96 |
+
if hf_key in SKIP_KEYS:
|
| 97 |
+
continue
|
| 98 |
+
|
| 99 |
+
mistral_key = map_hf_key_to_mistral(hf_key)
|
| 100 |
+
|
| 101 |
+
if "language_model" in hf_key:
|
| 102 |
+
if hf_key.endswith("q_proj.weight"):
|
| 103 |
+
tensor = permute_for_mistral_rope(tensor, num_attention_heads, query_dim, hidden_size)
|
| 104 |
+
elif hf_key.endswith("q_proj.weight_scale") and tensor.size(0) == num_attention_heads:
|
| 105 |
+
tensor = permute_for_mistral_rope(tensor, num_attention_heads, query_dim, 1)
|
| 106 |
+
elif hf_key.endswith("k_proj.weight"):
|
| 107 |
+
tensor = permute_for_mistral_rope(tensor, num_key_value_heads, key_value_dim, hidden_size)
|
| 108 |
+
elif hf_key.endswith("k_proj.weight_scale") and tensor.size(0) == num_key_value_heads:
|
| 109 |
+
tensor = permute_for_mistral_rope(tensor, num_key_value_heads, key_value_dim, 1)
|
| 110 |
+
|
| 111 |
+
mistral_dict[mistral_key] = tensor
|
| 112 |
+
|
| 113 |
+
return mistral_dict
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def write_model(
|
| 117 |
+
input_path_or_repo,
|
| 118 |
+
output_dir,
|
| 119 |
+
unquantized_model_path=None,
|
| 120 |
+
):
|
| 121 |
+
print("Converting HF Voxtral model to Mistral format.")
|
| 122 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 123 |
+
|
| 124 |
+
# Load the HF Voxtral model
|
| 125 |
+
print(f"Loading HF Voxtral model from {input_path_or_repo}...")
|
| 126 |
+
hf_config = VoxtralConfig.from_pretrained(input_path_or_repo)
|
| 127 |
+
|
| 128 |
+
local_path = snapshot_download(input_path_or_repo)
|
| 129 |
+
|
| 130 |
+
# Convert config
|
| 131 |
+
config_path = os.path.join(local_path, "params.json")
|
| 132 |
+
with open(config_path, "r") as f:
|
| 133 |
+
config = json.load(f)
|
| 134 |
+
if os.path.exists(config_path):
|
| 135 |
+
if unquantized_model_path is not None:
|
| 136 |
+
config = add_quantization_config(config, hf_config)
|
| 137 |
+
|
| 138 |
+
with open(os.path.join(output_dir, "params.json"), "w") as f:
|
| 139 |
+
json.dump(config, f, indent=2)
|
| 140 |
+
else:
|
| 141 |
+
raise ValueError(f"Unquantized model config not found for {unquantized_model_path}")
|
| 142 |
+
|
| 143 |
+
# Convert state dict
|
| 144 |
+
print("Converting state dict...")
|
| 145 |
+
tensor_files = sorted([f for f in os.listdir(os.path.join(local_path)) if f.endswith(".safetensors")])
|
| 146 |
+
|
| 147 |
+
hf_state_dict = {}
|
| 148 |
+
|
| 149 |
+
for file in tensor_files:
|
| 150 |
+
file_path = os.path.join(local_path, file)
|
| 151 |
+
with safe_open(file_path, framework="pt", device="cuda") as f:
|
| 152 |
+
for key in f.keys():
|
| 153 |
+
hf_state_dict[key] = f.get_tensor(key)
|
| 154 |
+
|
| 155 |
+
mistral_state_dict = convert_state_dict(hf_state_dict, config)
|
| 156 |
+
|
| 157 |
+
# save the state dict
|
| 158 |
+
save_file(mistral_state_dict, os.path.join(output_dir, "consolidated.safetensors"))
|
| 159 |
+
|
| 160 |
+
del hf_state_dict, mistral_state_dict
|
| 161 |
+
gc.collect()
|
| 162 |
+
print("Model converted successfully.")
|
| 163 |
+
|
| 164 |
+
def write_tokenizer(input_path_or_repo: str, output_dir: str):
|
| 165 |
+
"""Extract and save the tokenizer from Voxtral model"""
|
| 166 |
+
from transformers import MistralCommonTokenizer
|
| 167 |
+
|
| 168 |
+
print("Extracting tokenizer...")
|
| 169 |
+
tokenizer = MistralCommonTokenizer.from_pretrained(input_path_or_repo)
|
| 170 |
+
tokenizer.save_pretrained(output_dir)
|
| 171 |
+
print("Tokenizer saved successfully.")
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def main():
|
| 175 |
+
parser = argparse.ArgumentParser(description="Convert HF Voxtral weights to Mistral format")
|
| 176 |
+
parser.add_argument(
|
| 177 |
+
"--input_path_or_repo",
|
| 178 |
+
type=str,
|
| 179 |
+
default="RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic",
|
| 180 |
+
help="Path or repo containing HF Voxtral model",
|
| 181 |
+
)
|
| 182 |
+
parser.add_argument(
|
| 183 |
+
"--output_dir",
|
| 184 |
+
type=str,
|
| 185 |
+
default="Voxtral-Mini-3B-2507-FP8-dynamic-converted",
|
| 186 |
+
help="Location to write Mistral model and tokenizer",
|
| 187 |
+
)
|
| 188 |
+
parser.add_argument(
|
| 189 |
+
"--skip_tokenizer",
|
| 190 |
+
action="store_true",
|
| 191 |
+
help="Skip tokenizer conversion"
|
| 192 |
+
)
|
| 193 |
+
parser.add_argument(
|
| 194 |
+
"--unquantized_model_path",
|
| 195 |
+
type=str,
|
| 196 |
+
default="mistralai/Voxtral-Mini-3B-2507",
|
| 197 |
+
help="Path to the unquantized model",
|
| 198 |
+
)
|
| 199 |
+
args = parser.parse_args()
|
| 200 |
+
|
| 201 |
+
write_model(
|
| 202 |
+
args.input_path_or_repo,
|
| 203 |
+
args.output_dir,
|
| 204 |
+
unquantized_model_path=args.unquantized_model_path,
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
if not args.skip_tokenizer:
|
| 208 |
+
write_tokenizer(
|
| 209 |
+
args.input_path_or_repo,
|
| 210 |
+
args.output_dir,
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
if __name__ == "__main__":
|
| 215 |
+
main()
|
params.json
CHANGED
|
@@ -30,5 +30,241 @@
|
|
| 30 |
"downsample_factor": 4
|
| 31 |
}
|
| 32 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
}
|
| 34 |
}
|
|
|
|
| 30 |
"downsample_factor": 4
|
| 31 |
}
|
| 32 |
}
|
| 33 |
+
},
|
| 34 |
+
"quantization": {
|
| 35 |
+
"config_groups": {
|
| 36 |
+
"group_0": {
|
| 37 |
+
"input_activations": {
|
| 38 |
+
"actorder": null,
|
| 39 |
+
"block_structure": null,
|
| 40 |
+
"dynamic": true,
|
| 41 |
+
"group_size": null,
|
| 42 |
+
"num_bits": 8,
|
| 43 |
+
"observer": null,
|
| 44 |
+
"observer_kwargs": {},
|
| 45 |
+
"strategy": "token",
|
| 46 |
+
"symmetric": true,
|
| 47 |
+
"type": "float"
|
| 48 |
+
},
|
| 49 |
+
"output_activations": null,
|
| 50 |
+
"targets": [
|
| 51 |
+
"Linear"
|
| 52 |
+
],
|
| 53 |
+
"weights": {
|
| 54 |
+
"actorder": null,
|
| 55 |
+
"block_structure": null,
|
| 56 |
+
"dynamic": false,
|
| 57 |
+
"group_size": null,
|
| 58 |
+
"num_bits": 8,
|
| 59 |
+
"observer": "minmax",
|
| 60 |
+
"observer_kwargs": {},
|
| 61 |
+
"strategy": "channel",
|
| 62 |
+
"symmetric": true,
|
| 63 |
+
"type": "float"
|
| 64 |
+
}
|
| 65 |
+
}
|
| 66 |
+
},
|
| 67 |
+
"format": "float-quantized",
|
| 68 |
+
"global_compression_ratio": null,
|
| 69 |
+
"ignore": [
|
| 70 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.attention.wk",
|
| 71 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.attention.wv",
|
| 72 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.attention.wq",
|
| 73 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.attention.wo",
|
| 74 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.feed_forward.w1",
|
| 75 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.feed_forward.w2",
|
| 76 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.attention.wk",
|
| 77 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.attention.wv",
|
| 78 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.attention.wq",
|
| 79 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.attention.wo",
|
| 80 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.feed_forward.w1",
|
| 81 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.feed_forward.w2",
|
| 82 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.attention.wk",
|
| 83 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.attention.wv",
|
| 84 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.attention.wq",
|
| 85 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.attention.wo",
|
| 86 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.feed_forward.w1",
|
| 87 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.feed_forward.w2",
|
| 88 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.attention.wk",
|
| 89 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.attention.wv",
|
| 90 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.attention.wq",
|
| 91 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.attention.wo",
|
| 92 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.feed_forward.w1",
|
| 93 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.feed_forward.w2",
|
| 94 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.attention.wk",
|
| 95 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.attention.wv",
|
| 96 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.attention.wq",
|
| 97 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.attention.wo",
|
| 98 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.feed_forward.w1",
|
| 99 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.feed_forward.w2",
|
| 100 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.attention.wk",
|
| 101 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.attention.wv",
|
| 102 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.attention.wq",
|
| 103 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.attention.wo",
|
| 104 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.feed_forward.w1",
|
| 105 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.feed_forward.w2",
|
| 106 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.attention.wk",
|
| 107 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.attention.wv",
|
| 108 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.attention.wq",
|
| 109 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.attention.wo",
|
| 110 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.feed_forward.w1",
|
| 111 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.feed_forward.w2",
|
| 112 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.attention.wk",
|
| 113 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.attention.wv",
|
| 114 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.attention.wq",
|
| 115 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.attention.wo",
|
| 116 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.feed_forward.w1",
|
| 117 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.feed_forward.w2",
|
| 118 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.attention.wk",
|
| 119 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.attention.wv",
|
| 120 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.attention.wq",
|
| 121 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.attention.wo",
|
| 122 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.feed_forward.w1",
|
| 123 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.feed_forward.w2",
|
| 124 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.attention.wk",
|
| 125 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.attention.wv",
|
| 126 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.attention.wq",
|
| 127 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.attention.wo",
|
| 128 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.feed_forward.w1",
|
| 129 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.feed_forward.w2",
|
| 130 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.attention.wk",
|
| 131 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.attention.wv",
|
| 132 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.attention.wq",
|
| 133 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.attention.wo",
|
| 134 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.feed_forward.w1",
|
| 135 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.feed_forward.w2",
|
| 136 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.attention.wk",
|
| 137 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.attention.wv",
|
| 138 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.attention.wq",
|
| 139 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.attention.wo",
|
| 140 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.feed_forward.w1",
|
| 141 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.feed_forward.w2",
|
| 142 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.attention.wk",
|
| 143 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.attention.wv",
|
| 144 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.attention.wq",
|
| 145 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.attention.wo",
|
| 146 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.feed_forward.w1",
|
| 147 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.feed_forward.w2",
|
| 148 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.attention.wk",
|
| 149 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.attention.wv",
|
| 150 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.attention.wq",
|
| 151 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.attention.wo",
|
| 152 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.feed_forward.w1",
|
| 153 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.feed_forward.w2",
|
| 154 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.attention.wk",
|
| 155 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.attention.wv",
|
| 156 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.attention.wq",
|
| 157 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.attention.wo",
|
| 158 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.feed_forward.w1",
|
| 159 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.feed_forward.w2",
|
| 160 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.attention.wk",
|
| 161 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.attention.wv",
|
| 162 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.attention.wq",
|
| 163 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.attention.wo",
|
| 164 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.feed_forward.w1",
|
| 165 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.feed_forward.w2",
|
| 166 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.attention.wk",
|
| 167 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.attention.wv",
|
| 168 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.attention.wq",
|
| 169 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.attention.wo",
|
| 170 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.feed_forward.w1",
|
| 171 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.feed_forward.w2",
|
| 172 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.attention.wk",
|
| 173 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.attention.wv",
|
| 174 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.attention.wq",
|
| 175 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.attention.wo",
|
| 176 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.feed_forward.w1",
|
| 177 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.feed_forward.w2",
|
| 178 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.attention.wk",
|
| 179 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.attention.wv",
|
| 180 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.attention.wq",
|
| 181 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.attention.wo",
|
| 182 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.feed_forward.w1",
|
| 183 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.feed_forward.w2",
|
| 184 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.attention.wk",
|
| 185 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.attention.wv",
|
| 186 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.attention.wq",
|
| 187 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.attention.wo",
|
| 188 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.feed_forward.w1",
|
| 189 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.feed_forward.w2",
|
| 190 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.attention.wk",
|
| 191 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.attention.wv",
|
| 192 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.attention.wq",
|
| 193 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.attention.wo",
|
| 194 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.feed_forward.w1",
|
| 195 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.feed_forward.w2",
|
| 196 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.attention.wk",
|
| 197 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.attention.wv",
|
| 198 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.attention.wq",
|
| 199 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.attention.wo",
|
| 200 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.feed_forward.w1",
|
| 201 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.feed_forward.w2",
|
| 202 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.attention.wk",
|
| 203 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.attention.wv",
|
| 204 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.attention.wq",
|
| 205 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.attention.wo",
|
| 206 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.feed_forward.w1",
|
| 207 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.feed_forward.w2",
|
| 208 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.attention.wk",
|
| 209 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.attention.wv",
|
| 210 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.attention.wq",
|
| 211 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.attention.wo",
|
| 212 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.feed_forward.w1",
|
| 213 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.feed_forward.w2",
|
| 214 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.attention.wk",
|
| 215 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.attention.wv",
|
| 216 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.attention.wq",
|
| 217 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.attention.wo",
|
| 218 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.feed_forward.w1",
|
| 219 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.feed_forward.w2",
|
| 220 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.attention.wk",
|
| 221 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.attention.wv",
|
| 222 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.attention.wq",
|
| 223 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.attention.wo",
|
| 224 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.feed_forward.w1",
|
| 225 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.feed_forward.w2",
|
| 226 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.attention.wk",
|
| 227 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.attention.wv",
|
| 228 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.attention.wq",
|
| 229 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.attention.wo",
|
| 230 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.feed_forward.w1",
|
| 231 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.feed_forward.w2",
|
| 232 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.attention.wk",
|
| 233 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.attention.wv",
|
| 234 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.attention.wq",
|
| 235 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.attention.wo",
|
| 236 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.feed_forward.w1",
|
| 237 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.feed_forward.w2",
|
| 238 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.attention.wk",
|
| 239 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.attention.wv",
|
| 240 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.attention.wq",
|
| 241 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.attention.wo",
|
| 242 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.feed_forward.w1",
|
| 243 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.feed_forward.w2",
|
| 244 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.attention.wk",
|
| 245 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.attention.wv",
|
| 246 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.attention.wq",
|
| 247 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.attention.wo",
|
| 248 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.feed_forward.w1",
|
| 249 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.feed_forward.w2",
|
| 250 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.attention.wk",
|
| 251 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.attention.wv",
|
| 252 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.attention.wq",
|
| 253 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.attention.wo",
|
| 254 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.feed_forward.w1",
|
| 255 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.feed_forward.w2",
|
| 256 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.attention.wk",
|
| 257 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.attention.wv",
|
| 258 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.attention.wq",
|
| 259 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.attention.wo",
|
| 260 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.feed_forward.w1",
|
| 261 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.feed_forward.w2",
|
| 262 |
+
"output",
|
| 263 |
+
"mm_whisper_embeddings.audio_language_projection.0",
|
| 264 |
+
"mm_whisper_embeddings.audio_language_projection.2"
|
| 265 |
+
],
|
| 266 |
+
"kv_cache_scheme": null,
|
| 267 |
+
"quant_method": "compressed-tensors",
|
| 268 |
+
"quantization_status": "compressed"
|
| 269 |
}
|
| 270 |
}
|