File size: 13,726 Bytes
02776bc
 
 
 
 
 
 
f7882f0
 
 
 
 
 
02776bc
f7882f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0878857
f7882f0
796df36
 
 
02776bc
 
796df36
 
 
 
02776bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0878857
02776bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e8cd11
02776bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796df36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce4208e
796df36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02776bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5e1fd
02776bc
 
459ac81
02776bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
---
language:
- en
- fr
- es
- pt
- hi
- de
- nl
- it
base_model:
- mistralai/Voxtral-Mini-3B-2507
pipeline_tag: automatic-speech-recognition
tags:
- voxtral
- fp8
- quantized
- multimodal
- conversational
- text-generation-inference
- automatic-speech-recognition
- automatic-speech-translation
- audio-text-to-text
- video-text-to-text
- compressed-tensors
license: apache-2.0
license_name: apache-2.0
name: RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic
description: A quantized version of the Voxtral-Mini-3B-2507 model, optimized for speech transcription, translation, and audio understanding with FP8 data type quantization.
readme: https://huggingface.co/RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic/main/README.md
tasks:
- automatic-speech-recognition
- automatic-speech-translation
- audio-to-text
- text-to-text
provider: Mistral
license_link: https://www.apache.org/licenses/LICENSE-2.0
validated_on:
  - RHOAI 2.25
  - RHAIIS 3.2.2
---

<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
  Voxtral-Mini-3B-2507-FP8-dynamic
  <img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
</h1>

## Model Overview
- **Model Architecture:** VoxtralForConditionalGeneration
  - **Input:** Audio-Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Intended Use Cases:** Voxtral builds upon Ministral-3B with powerful audio understanding capabilities.
  - **Dedicated transcription mode:** Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
  - **Long-form context:** With a 32k token context length, Voxtral handles audios up to 30 minutes for transcription, or 40 minutes for understanding
  - **Built-in Q&A and summarization:** Supports asking questions directly through audio. Analyze audio and generate structured summaries without the need for separate ASR and language models
  - **Natively multilingual:** Automatic language detection and state-of-the-art performance in the world’s most widely used languages (English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)
  - **Function-calling straight from voice:** Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
  - **Highly capable at text:** Retains the text understanding capabilities of its language model backbone, Ministral-3B
- **Release Date:** 08/21/2025
- **Version:** 1.0
- **Model Developers:** Mistral

Quantized version of [Voxtral-Mini-3B-2507](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507).

### Model Optimizations

This model was obtained by quantizing activation and weights of [Voxtral-Mini-3B-2507](https://huggingface.co//Llama-3.3-70B-Instruct) to FP8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.

Only weights and activations of the linear operators within transformers blocks of the language model are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.

## Deployment

### Use with vLLM

1. Initialize vLLM server:
```
vllm serve RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic --tokenizer_mode mistral --config_format mistral --load_format mistral
```

2. Send requests to the server, according to the use case. See the following examples.

<details>
  <summary>Audio Instruct</summary>

```python
from mistral_common.protocol.instruct.messages import TextChunk, AudioChunk, UserMessage, AssistantMessage, RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
bcn_file = hf_hub_download("patrickvonplaten/audio_samples", "bcn_weather.mp3", repo_type="dataset")

def file_to_chunk(file: str) -> AudioChunk:
    audio = Audio.from_file(file, strict=False)
    return AudioChunk.from_audio(audio)

text_chunk = TextChunk(text="Which speaker is more inspiring? Why? How are they different from each other?")
user_msg = UserMessage(content=[file_to_chunk(obama_file), file_to_chunk(bcn_file), text_chunk]).to_openai()

print(30 * "=" + "USER 1" + 30 * "=")
print(text_chunk.text)
print("\n\n")

response = client.chat.completions.create(
    model=model,
    messages=[user_msg],
    temperature=0.2,
    top_p=0.95,
)
content = response.choices[0].message.content

print(30 * "=" + "BOT 1" + 30 * "=")
print(content)
print("\n\n")
# The speaker who is more inspiring is the one who delivered the farewell address, as they express
# gratitude, optimism, and a strong commitment to the nation and its citizens. They emphasize the importance of
# self-government and active citizenship, encouraging everyone to participate in the democratic process. In contrast,
# the other speaker provides a factual update on the weather in Barcelona, which is less inspiring as it
# lacks the emotional and motivational content of the farewell address.

# **Differences:**
# - The farewell address speaker focuses on the values and responsibilities of citizenship, encouraging active participation in democracy.
# - The weather update speaker provides factual information about the temperature in Barcelona, without any emotional or motivational content.


messages = [
    user_msg,
    AssistantMessage(content=content).to_openai(),
    UserMessage(content="Ok, now please summarize the content of the first audio.").to_openai()
]
print(30 * "=" + "USER 2" + 30 * "=")
print(messages[-1]["content"])
print("\n\n")

response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=0.2,
    top_p=0.95,
)
content = response.choices[0].message.content
print(30 * "=" + "BOT 2" + 30 * "=")
print(content)
```
</details>

<details>
  <summary>Transcription</summary>

```python
from mistral_common.protocol.transcription.request import TranscriptionRequest
from mistral_common.protocol.instruct.messages import RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
audio = Audio.from_file(obama_file, strict=False)

audio = RawAudio.from_audio(audio)
req = TranscriptionRequest(model=model, audio=audio, language="en", temperature=0.0).to_openai(exclude=("top_p", "seed"))

response = client.audio.transcriptions.create(**req)
print(response)
```
</details>

<details>
  <summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
  
```bash
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
 --ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768  \
--enforce-eager --model RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic
```
</details>


<details>
  <summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
  
```python
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
 name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
 annotations:
   openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
   opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
 labels:
   opendatahub.io/dashboard: 'true'
spec:
 annotations:
   prometheus.io/port: '8080'
   prometheus.io/path: '/metrics'
 multiModel: false
 supportedModelFormats:
   - autoSelect: true
     name: vLLM
 containers:
   - name: kserve-container
     image: quay.io/modh/vllm:rhoai-2.25-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.25-rocm
     command:
       - python
       - -m
       - vllm.entrypoints.openai.api_server
     args:
       - "--port=8080"
       - "--model=/mnt/models"
       - "--served-model-name={{.Name}}"
     env:
       - name: HF_HOME
         value: /tmp/hf_home
     ports:
       - containerPort: 8080
         protocol: TCP
```

```python
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  annotations:
    openshift.io/display-name: Voxtral-Mini-3B-2507-FP8-dynamic # OPTIONAL CHANGE
    serving.kserve.io/deploymentMode: RawDeployment
  name: Voxtral-Mini-3B-2507-FP8-dynamic         # specify model name. This value will be used to invoke the model in the payload
  labels:
    opendatahub.io/dashboard: 'true'
spec:
  predictor:
    maxReplicas: 1
    minReplicas: 1
    model:
      modelFormat:
        name: vLLM
      name: ''
      resources:
        limits:
          cpu: '2'			# this is model specific
          memory: 8Gi		# this is model specific
          nvidia.com/gpu: '1'	# this is accelerator specific
        requests:			# same comment for this block
          cpu: '1'
          memory: 4Gi
          nvidia.com/gpu: '1'
      runtime: vllm-cuda-runtime	# must match the ServingRuntime name above
      storageUri: oci://registry.stage.redhat.io/rhelai1/modelcar-voxtral-mini-3b-2507-fp8-dynamic:1.5
    tolerations:
    - effect: NoSchedule
      key: nvidia.com/gpu
      operator: Exists
```

```bash
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>

# apply both resources to run model

# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml

```

```python
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.

# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
        -H "Content-Type: application/json" \
        -d '{
    "model": "Voxtral-Mini-3B-2507-FP8-dynamic",
    "stream": true,
    "stream_options": {
        "include_usage": true
    },
    "max_tokens": 1,
    "messages": [
        {
            "role": "user",
            "content": "How can a bee fly when its wings are so small?"
        }
    ]
}'

```

See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
</details>

## Creation

This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below.

<details>
  <summary>Creation details</summary>

```python
import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier

# Select model and load it.
MODEL_ID = "mistralai/Voxtral-Mini-3B-2507"

model = VoxtralForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained(MODEL_ID)

# Recipe
recipe = QuantizationModifier(
    targets="Linear", 
    scheme="FP8_DYNAMIC", 
    ignore=["language_model.lm_head", "re:audio_tower.*" ,"re:multi_modal_projector.*"],
)

# Apply algorithms.
oneshot(
    model=model,
    recipe=recipe,
    processor=processor,
)

SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-dynamic"
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)
```

After quantization, the model can be converted back into the mistralai format using the `convert_voxtral_hf_to_mistral.py` script included with the model.
</details>

## Evaluation

The model was evaluated on the Fleurs transcription task.
Recovery is computed with respect to the complement of the word error rate (WER).

<table border="1" cellspacing="0" cellpadding="6">
  <tr>
    <th>Benchmark</th>
    <th>Language</th>
    <th>Voxtral-Mini-3B-2507</th>
    <th>Voxtral-Mini-3B-2507-FP8-dynamic<br>(this model)</th>
    <th>Recovery</th>
  </tr>
  <tr>
    <td rowspan="7"><strong>Fleurs<br>WER</strong></td>
    <td>English</td>
    <td>3.89%</td>
    <td>3.95%</td>
    <td>99.9%</td>
  </tr>
  <tr>
    <td>French</td>
    <td>5.07%</td>
    <td>4.86%</td>
    <td>100.2%</td>
  </tr>
  <tr>
    <td>Spanish</td>
    <td>3.63%</td>
    <td>3.55%</td>
    <td>100.1%</td>
  </tr>
  <tr>
    <td>German</td>
    <td>5.00%</td>
    <td>5.01%</td>
    <td>100.0%</td>
  </tr>
  <tr>
    <td>Italian</td>
    <td>2.54%</td>
    <td>2.57%</td>
    <td>100.0%</td>
  </tr>
  <tr>
    <td>Portuguese</td>
    <td>3.85%</td>
    <td>4.03%</td>
    <td>99.8%</td>
  </tr>
  <tr>
    <td>Dutch</td>
    <td>7.01%</td>
    <td>7.20%</td>
    <td>99.8%</td>
  </tr>
</table>