Update README.md
Browse files
README.md
CHANGED
|
@@ -31,8 +31,9 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
| 31 |
- **License(s):** Llama3.1
|
| 32 |
- **Model Developers:** Neural Magic
|
| 33 |
|
| 34 |
-
|
| 35 |
-
It
|
|
|
|
| 36 |
|
| 37 |
### Model Optimizations
|
| 38 |
|
|
@@ -128,9 +129,19 @@ model.save_pretrained("Meta-Llama-3.1-405B-Instruct-quantized.w4a16")
|
|
| 128 |
|
| 129 |
## Evaluation
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
**Note:** Results have been updated after Meta modified the chat template.
|
| 136 |
|
|
@@ -148,12 +159,26 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 148 |
<td><strong>Recovery</strong>
|
| 149 |
</td>
|
| 150 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
<tr>
|
| 152 |
<td>MMLU (5-shot)
|
| 153 |
</td>
|
| 154 |
-
<td>87.
|
| 155 |
</td>
|
| 156 |
-
<td>87.
|
| 157 |
</td>
|
| 158 |
<td>99.8%
|
| 159 |
</td>
|
|
@@ -161,9 +186,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 161 |
<tr>
|
| 162 |
<td>ARC Challenge (0-shot)
|
| 163 |
</td>
|
| 164 |
-
<td>
|
| 165 |
</td>
|
| 166 |
-
<td>95.
|
| 167 |
</td>
|
| 168 |
<td>100.4%
|
| 169 |
</td>
|
|
@@ -171,9 +196,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 171 |
<tr>
|
| 172 |
<td>GSM-8K (CoT, 8-shot, strict-match)
|
| 173 |
</td>
|
| 174 |
-
<td>96.
|
| 175 |
</td>
|
| 176 |
-
<td>96.
|
| 177 |
</td>
|
| 178 |
<td>99.8%
|
| 179 |
</td>
|
|
@@ -181,9 +206,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 181 |
<tr>
|
| 182 |
<td>Hellaswag (10-shot)
|
| 183 |
</td>
|
| 184 |
-
<td>88.
|
| 185 |
</td>
|
| 186 |
-
<td>88.
|
| 187 |
</td>
|
| 188 |
<td>99.9%
|
| 189 |
</td>
|
|
@@ -191,9 +216,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 191 |
<tr>
|
| 192 |
<td>Winogrande (5-shot)
|
| 193 |
</td>
|
| 194 |
-
<td>87.
|
| 195 |
</td>
|
| 196 |
-
<td>87.
|
| 197 |
</td>
|
| 198 |
<td>100.2%
|
| 199 |
</td>
|
|
@@ -201,9 +226,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 201 |
<tr>
|
| 202 |
<td>TruthfulQA (0-shot)
|
| 203 |
</td>
|
| 204 |
-
<td>64.
|
| 205 |
</td>
|
| 206 |
-
<td>65.
|
| 207 |
</td>
|
| 208 |
<td>101.0%
|
| 209 |
</td>
|
|
@@ -211,13 +236,111 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 211 |
<tr>
|
| 212 |
<td><strong>Average</strong>
|
| 213 |
</td>
|
| 214 |
-
<td><strong>86.
|
| 215 |
</td>
|
| 216 |
-
<td><strong>86.
|
| 217 |
</td>
|
| 218 |
<td><strong>100.0%</strong>
|
| 219 |
</td>
|
| 220 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
</table>
|
| 222 |
|
| 223 |
### Reproduction
|
|
@@ -287,4 +410,39 @@ lm_eval \
|
|
| 287 |
--tasks truthfulqa \
|
| 288 |
--num_fewshot 0 \
|
| 289 |
--batch_size auto
|
| 290 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
- **License(s):** Llama3.1
|
| 32 |
- **Model Developers:** Neural Magic
|
| 33 |
|
| 34 |
+
This model is a quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
| 35 |
+
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation.
|
| 36 |
+
Meta-Llama-3.1-405B-Instruct-quantized.w4a16 achieves 98.7% recovery for the Arena-Hard evaluation, 100.0% for OpenLLM v1 (using Meta's prompting when available), 99.0% for OpenLLM v2, 98.0% for HumanEval pass@1, and 98.5% for HumanEval+ pass@1.
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
|
|
| 129 |
|
| 130 |
## Evaluation
|
| 131 |
|
| 132 |
+
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks.
|
| 133 |
+
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 134 |
+
|
| 135 |
+
Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository.
|
| 136 |
+
The model generated a single answer for each prompt form Arena-Hard, and each answer was judged twice by GPT-4.
|
| 137 |
+
We report below the scores obtained in each judgement and the average.
|
| 138 |
+
|
| 139 |
+
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct).
|
| 140 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals) and a few fixes to OpenLLM v2 tasks.
|
| 141 |
+
|
| 142 |
+
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository.
|
| 143 |
+
|
| 144 |
+
Detailed model outputs are available as HuggingFace datasets for [Arena-Hard](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-arena-hard-evals), [OpenLLM v2](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-leaderboard-v2-evals), and [HumanEval](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-humaneval-evals).
|
| 145 |
|
| 146 |
**Note:** Results have been updated after Meta modified the chat template.
|
| 147 |
|
|
|
|
| 159 |
<td><strong>Recovery</strong>
|
| 160 |
</td>
|
| 161 |
</tr>
|
| 162 |
+
<tr>
|
| 163 |
+
<td><strong>Arena Hard</strong>
|
| 164 |
+
</td>
|
| 165 |
+
<td>67.4 (67.3 / 67.5)
|
| 166 |
+
</td>
|
| 167 |
+
<td>66.5 (66.5 / 66.4)
|
| 168 |
+
</td>
|
| 169 |
+
<td>98.7%
|
| 170 |
+
</td>
|
| 171 |
+
</tr>
|
| 172 |
+
<tr>
|
| 173 |
+
<td><strong>OpenLLM v1</strong>
|
| 174 |
+
</td>
|
| 175 |
+
</tr>
|
| 176 |
<tr>
|
| 177 |
<td>MMLU (5-shot)
|
| 178 |
</td>
|
| 179 |
+
<td>87.4
|
| 180 |
</td>
|
| 181 |
+
<td>87.2
|
| 182 |
</td>
|
| 183 |
<td>99.8%
|
| 184 |
</td>
|
|
|
|
| 186 |
<tr>
|
| 187 |
<td>ARC Challenge (0-shot)
|
| 188 |
</td>
|
| 189 |
+
<td>95.0
|
| 190 |
</td>
|
| 191 |
+
<td>95.3
|
| 192 |
</td>
|
| 193 |
<td>100.4%
|
| 194 |
</td>
|
|
|
|
| 196 |
<tr>
|
| 197 |
<td>GSM-8K (CoT, 8-shot, strict-match)
|
| 198 |
</td>
|
| 199 |
+
<td>96.4
|
| 200 |
</td>
|
| 201 |
+
<td>96.3
|
| 202 |
</td>
|
| 203 |
<td>99.8%
|
| 204 |
</td>
|
|
|
|
| 206 |
<tr>
|
| 207 |
<td>Hellaswag (10-shot)
|
| 208 |
</td>
|
| 209 |
+
<td>88.3
|
| 210 |
</td>
|
| 211 |
+
<td>88.3
|
| 212 |
</td>
|
| 213 |
<td>99.9%
|
| 214 |
</td>
|
|
|
|
| 216 |
<tr>
|
| 217 |
<td>Winogrande (5-shot)
|
| 218 |
</td>
|
| 219 |
+
<td>87.2
|
| 220 |
</td>
|
| 221 |
+
<td>87.4
|
| 222 |
</td>
|
| 223 |
<td>100.2%
|
| 224 |
</td>
|
|
|
|
| 226 |
<tr>
|
| 227 |
<td>TruthfulQA (0-shot)
|
| 228 |
</td>
|
| 229 |
+
<td>64.6
|
| 230 |
</td>
|
| 231 |
+
<td>65.3
|
| 232 |
</td>
|
| 233 |
<td>101.0%
|
| 234 |
</td>
|
|
|
|
| 236 |
<tr>
|
| 237 |
<td><strong>Average</strong>
|
| 238 |
</td>
|
| 239 |
+
<td><strong>86.8</strong>
|
| 240 |
</td>
|
| 241 |
+
<td><strong>86.8</strong>
|
| 242 |
</td>
|
| 243 |
<td><strong>100.0%</strong>
|
| 244 |
</td>
|
| 245 |
</tr>
|
| 246 |
+
<tr>
|
| 247 |
+
<td><strong>OpenLLM v2</strong>
|
| 248 |
+
</td>
|
| 249 |
+
</tr>
|
| 250 |
+
<tr>
|
| 251 |
+
<td>MMLU-Pro (5-shot)
|
| 252 |
+
</td>
|
| 253 |
+
<td>59.7
|
| 254 |
+
</td>
|
| 255 |
+
<td>59.4
|
| 256 |
+
</td>
|
| 257 |
+
<td>99.3%
|
| 258 |
+
</td>
|
| 259 |
+
</tr>
|
| 260 |
+
<tr>
|
| 261 |
+
<td>IFEval (0-shot)
|
| 262 |
+
</td>
|
| 263 |
+
<td>87.7
|
| 264 |
+
</td>
|
| 265 |
+
<td>88.0
|
| 266 |
+
</td>
|
| 267 |
+
<td>100.4%
|
| 268 |
+
</td>
|
| 269 |
+
</tr>
|
| 270 |
+
<tr>
|
| 271 |
+
<td>BBH (3-shot)
|
| 272 |
+
</td>
|
| 273 |
+
<td>67.0
|
| 274 |
+
</td>
|
| 275 |
+
<td>67.5
|
| 276 |
+
</td>
|
| 277 |
+
<td>100.7%
|
| 278 |
+
</td>
|
| 279 |
+
</tr>
|
| 280 |
+
<tr>
|
| 281 |
+
<td>Math-|v|-5 (4-shot)
|
| 282 |
+
</td>
|
| 283 |
+
<td>39.0
|
| 284 |
+
</td>
|
| 285 |
+
<td>37.6
|
| 286 |
+
</td>
|
| 287 |
+
<td>96.5%
|
| 288 |
+
</td>
|
| 289 |
+
</tr>
|
| 290 |
+
<tr>
|
| 291 |
+
<td>GPQA (0-shot)
|
| 292 |
+
</td>
|
| 293 |
+
<td>19.5
|
| 294 |
+
</td>
|
| 295 |
+
<td>17.5
|
| 296 |
+
</td>
|
| 297 |
+
<td>89.8%
|
| 298 |
+
</td>
|
| 299 |
+
</tr>
|
| 300 |
+
<tr>
|
| 301 |
+
<td>MuSR (0-shot)
|
| 302 |
+
</td>
|
| 303 |
+
<td>19.5
|
| 304 |
+
</td>
|
| 305 |
+
<td>19.4
|
| 306 |
+
</td>
|
| 307 |
+
<td>99.5%
|
| 308 |
+
</td>
|
| 309 |
+
</tr>
|
| 310 |
+
<tr>
|
| 311 |
+
<td><strong>Average</strong>
|
| 312 |
+
</td>
|
| 313 |
+
<td><strong>48.7</strong>
|
| 314 |
+
</td>
|
| 315 |
+
<td><strong>48.2</strong>
|
| 316 |
+
</td>
|
| 317 |
+
<td><strong>99.0%</strong>
|
| 318 |
+
</td>
|
| 319 |
+
</tr>
|
| 320 |
+
<tr>
|
| 321 |
+
<td><strong>Coding</strong>
|
| 322 |
+
</td>
|
| 323 |
+
</tr>
|
| 324 |
+
<tr>
|
| 325 |
+
<td>HumanEval pass@1
|
| 326 |
+
</td>
|
| 327 |
+
<td>86.8
|
| 328 |
+
</td>
|
| 329 |
+
<td>85.1
|
| 330 |
+
</td>
|
| 331 |
+
<td>98.0%
|
| 332 |
+
</td>
|
| 333 |
+
</tr>
|
| 334 |
+
<tr>
|
| 335 |
+
<td>HumanEval+ pass@1
|
| 336 |
+
</td>
|
| 337 |
+
<td>80.1
|
| 338 |
+
</td>
|
| 339 |
+
<td>78.9
|
| 340 |
+
</td>
|
| 341 |
+
<td>98.5%
|
| 342 |
+
</td>
|
| 343 |
+
</tr>
|
| 344 |
</table>
|
| 345 |
|
| 346 |
### Reproduction
|
|
|
|
| 410 |
--tasks truthfulqa \
|
| 411 |
--num_fewshot 0 \
|
| 412 |
--batch_size auto
|
| 413 |
+
```
|
| 414 |
+
|
| 415 |
+
#### OpenLLM v2
|
| 416 |
+
```
|
| 417 |
+
lm_eval \
|
| 418 |
+
--model vllm \
|
| 419 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8,enable_chunked_prefill=True \
|
| 420 |
+
--apply_chat_template \
|
| 421 |
+
--fewshot_as_multiturn \
|
| 422 |
+
--tasks leaderboard \
|
| 423 |
+
--batch_size auto
|
| 424 |
+
```
|
| 425 |
+
|
| 426 |
+
#### HumanEval and HumanEval+
|
| 427 |
+
##### Generation
|
| 428 |
+
```
|
| 429 |
+
python3 codegen/generate.py \
|
| 430 |
+
--model neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16 \
|
| 431 |
+
--bs 16 \
|
| 432 |
+
--temperature 0.2 \
|
| 433 |
+
--n_samples 50 \
|
| 434 |
+
--root "." \
|
| 435 |
+
--dataset humaneval \
|
| 436 |
+
--tp 8
|
| 437 |
+
```
|
| 438 |
+
##### Sanitization
|
| 439 |
+
```
|
| 440 |
+
python3 evalplus/sanitize.py \
|
| 441 |
+
humaneval/neuralmagic--Meta-Llama-3.1-405B-Instruct-quantized.w4a16_vllm_temp_0.2
|
| 442 |
+
```
|
| 443 |
+
##### Evaluation
|
| 444 |
+
```
|
| 445 |
+
evalplus.evaluate \
|
| 446 |
+
--dataset humaneval \
|
| 447 |
+
--samples humaneval/neuralmagic--Meta-Llama-3.1-405B-Instruct-quantized.w4a16_vllm_temp_0.2-sanitized
|
| 448 |
+
```
|