| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						"""Qwen2 model configuration""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.configuration_utils import PretrainedConfig | 
					
					
						
						| 
							 | 
						from transformers.utils import logging | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Qwen2RMConfig(PretrainedConfig): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a | 
					
					
						
						| 
							 | 
						    Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration | 
					
					
						
						| 
							 | 
						    with the defaults will yield a similar configuration to that of | 
					
					
						
						| 
							 | 
						    Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
					
						
						| 
							 | 
						    documentation from [`PretrainedConfig`] for more information. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vocab_size (`int`, *optional*, defaults to 151936): | 
					
					
						
						| 
							 | 
						            Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the | 
					
					
						
						| 
							 | 
						            `inputs_ids` passed when calling [`Qwen2Model`] | 
					
					
						
						| 
							 | 
						        hidden_size (`int`, *optional*, defaults to 4096): | 
					
					
						
						| 
							 | 
						            Dimension of the hidden representations. | 
					
					
						
						| 
							 | 
						        intermediate_size (`int`, *optional*, defaults to 22016): | 
					
					
						
						| 
							 | 
						            Dimension of the MLP representations. | 
					
					
						
						| 
							 | 
						        num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of hidden layers in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        num_attention_heads (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of attention heads for each attention layer in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        num_key_value_heads (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
					
						
						| 
							 | 
						            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
					
						
						| 
							 | 
						            by meanpooling all the original heads within that group. For more details checkout [this | 
					
					
						
						| 
							 | 
						            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. | 
					
					
						
						| 
							 | 
						        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
					
						
						| 
							 | 
						            The non-linear activation function (function or string) in the decoder. | 
					
					
						
						| 
							 | 
						        max_position_embeddings (`int`, *optional*, defaults to 32768): | 
					
					
						
						| 
							 | 
						            The maximum sequence length that this model might ever be used with. | 
					
					
						
						| 
							 | 
						        initializer_range (`float`, *optional*, defaults to 0.02): | 
					
					
						
						| 
							 | 
						            The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
					
						
						| 
							 | 
						        rms_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
					
						
						| 
							 | 
						            The epsilon used by the rms normalization layers. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
					
						
						| 
							 | 
						            relevant if `config.is_decoder=True`. | 
					
					
						
						| 
							 | 
						        tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Whether the model's input and output word embeddings should be tied. | 
					
					
						
						| 
							 | 
						        rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
					
						
						| 
							 | 
						            The base period of the RoPE embeddings. | 
					
					
						
						| 
							 | 
						        use_sliding_window (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Whether to use sliding window attention. | 
					
					
						
						| 
							 | 
						        sliding_window (`int`, *optional*, defaults to 4096): | 
					
					
						
						| 
							 | 
						            Sliding window attention (SWA) window size. If not specified, will default to `4096`. | 
					
					
						
						| 
							 | 
						        max_window_layers (`int`, *optional*, defaults to 28): | 
					
					
						
						| 
							 | 
						            The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. | 
					
					
						
						| 
							 | 
						        attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						            The dropout ratio for the attention probabilities. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    ```python | 
					
					
						
						| 
							 | 
						    >>> from transformers import Qwen2Model, Qwen2Config | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a Qwen2 style configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = Qwen2Config() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a model from the Qwen2-7B style configuration | 
					
					
						
						| 
							 | 
						    >>> model = Qwen2Model(configuration) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Accessing the model configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = model.config | 
					
					
						
						| 
							 | 
						    ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_type = "qwen2" | 
					
					
						
						| 
							 | 
						    keys_to_ignore_at_inference = ["past_key_values"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vocab_size=151936, | 
					
					
						
						| 
							 | 
						        hidden_size=4096, | 
					
					
						
						| 
							 | 
						        intermediate_size=22016, | 
					
					
						
						| 
							 | 
						        num_hidden_layers=32, | 
					
					
						
						| 
							 | 
						        num_attention_heads=32, | 
					
					
						
						| 
							 | 
						        num_key_value_heads=32, | 
					
					
						
						| 
							 | 
						        hidden_act="silu", | 
					
					
						
						| 
							 | 
						        max_position_embeddings=32768, | 
					
					
						
						| 
							 | 
						        initializer_range=0.02, | 
					
					
						
						| 
							 | 
						        rms_norm_eps=1e-6, | 
					
					
						
						| 
							 | 
						        use_cache=True, | 
					
					
						
						| 
							 | 
						        tie_word_embeddings=False, | 
					
					
						
						| 
							 | 
						        rope_theta=10000.0, | 
					
					
						
						| 
							 | 
						        use_sliding_window=False, | 
					
					
						
						| 
							 | 
						        sliding_window=4096, | 
					
					
						
						| 
							 | 
						        max_window_layers=28, | 
					
					
						
						| 
							 | 
						        attention_dropout=0.0, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.vocab_size = vocab_size | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.intermediate_size = intermediate_size | 
					
					
						
						| 
							 | 
						        self.num_hidden_layers = num_hidden_layers | 
					
					
						
						| 
							 | 
						        self.num_attention_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						        self.use_sliding_window = use_sliding_window | 
					
					
						
						| 
							 | 
						        self.sliding_window = sliding_window if use_sliding_window else None | 
					
					
						
						| 
							 | 
						        self.max_window_layers = max_window_layers | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if num_key_value_heads is None: | 
					
					
						
						| 
							 | 
						            num_key_value_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.hidden_act = hidden_act | 
					
					
						
						| 
							 | 
						        self.initializer_range = initializer_range | 
					
					
						
						| 
							 | 
						        self.rms_norm_eps = rms_norm_eps | 
					
					
						
						| 
							 | 
						        self.use_cache = use_cache | 
					
					
						
						| 
							 | 
						        self.rope_theta = rope_theta | 
					
					
						
						| 
							 | 
						        self.attention_dropout = attention_dropout | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        super().__init__( | 
					
					
						
						| 
							 | 
						            tie_word_embeddings=tie_word_embeddings, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) |