Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
|
| 4 |
+
base_model: deepseek-ai/deepseek-coder-6.7b-instruct
|
| 5 |
+
tags:
|
| 6 |
+
- instruct
|
| 7 |
+
- finetune
|
| 8 |
+
library_name: transformers
|
| 9 |
+
license: cc-by-sa-4.0
|
| 10 |
+
pipeline_tag: text-generation
|
| 11 |
+
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
[](https://hf.co/QuantFactory)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# QuantFactory/natural-sql-7b-GGUF
|
| 18 |
+
This is quantized version of [chatdb/natural-sql-7b](https://huggingface.co/chatdb/natural-sql-7b) created using llama.cpp
|
| 19 |
+
|
| 20 |
+
# Original Model Card
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# **Natural-SQL-7B by ChatDB**
|
| 24 |
+
## Natural-SQL-7B is a model with very strong performance in Text-to-SQL instructions, has an excellent understanding of complex questions, and outperforms models of the same size in its space.
|
| 25 |
+
|
| 26 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/hafdsfrFCqrVbATIzV_EN.png" width="600">
|
| 27 |
+
|
| 28 |
+
[ChatDB.ai](https://chatdb.ai) | [Notebook](https://github.com/cfahlgren1/natural-sql/blob/main/natural-sql-7b.ipynb) | [Twitter](https://twitter.com/calebfahlgren)
|
| 29 |
+
|
| 30 |
+
# **Benchmarks**
|
| 31 |
+
### *Results on Novel Datasets not trained on via SQL-Eval*
|
| 32 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/5ynfoKPzI3_-WasQQt7qR.png" width="800">
|
| 33 |
+
|
| 34 |
+
<em>Big thanks to the [defog](https://huggingface.co/defog) team for open sourcing [sql-eval](https://github.com/defog-ai/sql-eval)</em>👏
|
| 35 |
+
|
| 36 |
+
Natural-SQL also can handle complex, compound questions that other models typically struggle with. There is a more detailed writeup Here is a write up, small test done [here](https://chatdb.ai/post/naturalsql-vs-sqlcoder-for-text-to-sql).
|
| 37 |
+
# Usage
|
| 38 |
+
|
| 39 |
+
Make sure you have the correct version of the transformers library installed:
|
| 40 |
+
|
| 41 |
+
```sh
|
| 42 |
+
pip install transformers==4.35.2
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
### Loading the Model
|
| 46 |
+
|
| 47 |
+
Use the following Python code to load the model:
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
import torch
|
| 51 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained("chatdb/natural-sql-7b")
|
| 53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 54 |
+
"chatdb/natural-sql-7b",
|
| 55 |
+
device_map="auto",
|
| 56 |
+
torch_dtype=torch.float16,
|
| 57 |
+
)
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
### **License**
|
| 61 |
+
|
| 62 |
+
The model weights are licensed under `CC BY-SA 4.0`, with extra guidelines for responsible use expanded from the original model's [Deepseek](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) license.
|
| 63 |
+
You're free to use and adapt the model, even commercially.
|
| 64 |
+
If you alter the weights, such as through fine-tuning, you must publicly share your changes under the same `CC BY-SA 4.0` license.
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
### Generating SQL
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 71 |
+
generated_ids = model.generate(
|
| 72 |
+
**inputs,
|
| 73 |
+
num_return_sequences=1,
|
| 74 |
+
eos_token_id=100001,
|
| 75 |
+
pad_token_id=100001,
|
| 76 |
+
max_new_tokens=400,
|
| 77 |
+
do_sample=False,
|
| 78 |
+
num_beams=1,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 82 |
+
print(outputs[0].split("```sql")[-1])
|
| 83 |
+
```
|
| 84 |
+
# Prompt Template
|
| 85 |
+
|
| 86 |
+
```
|
| 87 |
+
# Task
|
| 88 |
+
Generate a SQL query to answer the following question: `{natural language question}`
|
| 89 |
+
|
| 90 |
+
### PostgreSQL Database Schema
|
| 91 |
+
The query will run on a database with the following schema:
|
| 92 |
+
|
| 93 |
+
<SQL Table DDL Statements>
|
| 94 |
+
|
| 95 |
+
# SQL
|
| 96 |
+
Here is the SQL query that answers the question: `{natural language question}`
|
| 97 |
+
'''sql
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# Example SQL Output
|
| 102 |
+
|
| 103 |
+
### Example Schemas
|
| 104 |
+
|
| 105 |
+
```sql
|
| 106 |
+
CREATE TABLE users (
|
| 107 |
+
user_id SERIAL PRIMARY KEY,
|
| 108 |
+
username VARCHAR(50) NOT NULL,
|
| 109 |
+
email VARCHAR(100) NOT NULL,
|
| 110 |
+
password_hash TEXT NOT NULL,
|
| 111 |
+
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
|
| 112 |
+
);
|
| 113 |
+
CREATE TABLE projects (
|
| 114 |
+
project_id SERIAL PRIMARY KEY,
|
| 115 |
+
project_name VARCHAR(100) NOT NULL,
|
| 116 |
+
description TEXT,
|
| 117 |
+
start_date DATE,
|
| 118 |
+
end_date DATE,
|
| 119 |
+
owner_id INTEGER REFERENCES users(user_id)
|
| 120 |
+
);
|
| 121 |
+
CREATE TABLE tasks (
|
| 122 |
+
task_id SERIAL PRIMARY KEY,
|
| 123 |
+
task_name VARCHAR(100) NOT NULL,
|
| 124 |
+
description TEXT,
|
| 125 |
+
due_date DATE,
|
| 126 |
+
status VARCHAR(50),
|
| 127 |
+
project_id INTEGER REFERENCES projects(project_id)
|
| 128 |
+
);
|
| 129 |
+
CREATE TABLE taskassignments (
|
| 130 |
+
assignment_id SERIAL PRIMARY KEY,
|
| 131 |
+
task_id INTEGER REFERENCES tasks(task_id),
|
| 132 |
+
user_id INTEGER REFERENCES users(user_id),
|
| 133 |
+
assigned_date DATE NOT NULL DEFAULT CURRENT_TIMESTAMP
|
| 134 |
+
);
|
| 135 |
+
CREATE TABLE comments (
|
| 136 |
+
comment_id SERIAL PRIMARY KEY,
|
| 137 |
+
content TEXT NOT NULL,
|
| 138 |
+
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
| 139 |
+
task_id INTEGER REFERENCES tasks(task_id),
|
| 140 |
+
user_id INTEGER REFERENCES users(user_id)
|
| 141 |
+
);
|
| 142 |
+
```
|
| 143 |
+
### Example SQL Outputs
|
| 144 |
+
|
| 145 |
+
**Question**: **Show me the day with the most users joining**
|
| 146 |
+
```sql
|
| 147 |
+
SELECT created_at::DATE AS day, COUNT(*) AS user_count
|
| 148 |
+
FROM users
|
| 149 |
+
GROUP BY day
|
| 150 |
+
ORDER BY user_count DESC
|
| 151 |
+
LIMIT 1;
|
| 152 |
+
```
|
| 153 |
+
**Question**: **Show me the project that has a task with the most comments**
|
| 154 |
+
```sql
|
| 155 |
+
SELECT p.project_name, t.task_name, COUNT(c.comment_id) AS comment_count
|
| 156 |
+
FROM projects p
|
| 157 |
+
JOIN tasks t ON p.project_id = t.project_id
|
| 158 |
+
JOIN comments c ON t.task_id = c.task_id
|
| 159 |
+
GROUP BY p.project_name, t.task_name
|
| 160 |
+
ORDER BY comment_count DESC
|
| 161 |
+
LIMIT 1;
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
**Question**: **What is the ratio of users with gmail addresses vs without?**
|
| 165 |
+
```sql
|
| 166 |
+
SELECT
|
| 167 |
+
SUM(CASE WHEN email ILIKE '%@gmail.com%' THEN 1 ELSE 0 END)::FLOAT / NULLIF(SUM(CASE WHEN email NOT ILIKE '%@gmail.com%' THEN 1 ELSE 0 END), 0) AS gmail_ratio
|
| 168 |
+
FROM
|
| 169 |
+
users;
|
| 170 |
+
```
|