Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import paddle
|
| 7 |
+
from paddle.nn import functional as F
|
| 8 |
+
import random
|
| 9 |
+
from paddle.io import Dataset
|
| 10 |
+
from visualdl import LogWriter
|
| 11 |
+
from paddle.vision.transforms import transforms as T
|
| 12 |
+
import warnings
|
| 13 |
+
import cv2 as cv
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import re
|
| 16 |
+
warnings.filterwarnings("ignore")
|
| 17 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
| 18 |
+
|
| 19 |
+
class SeparableConv2D(paddle.nn.Layer):
|
| 20 |
+
def __init__(self,
|
| 21 |
+
in_channels,
|
| 22 |
+
out_channels,
|
| 23 |
+
kernel_size,
|
| 24 |
+
stride=1,
|
| 25 |
+
padding=0,
|
| 26 |
+
dilation=1,
|
| 27 |
+
groups=None,
|
| 28 |
+
weight_attr=None,
|
| 29 |
+
bias_attr=None,
|
| 30 |
+
data_format="NCHW"):
|
| 31 |
+
super(SeparableConv2D, self).__init__()
|
| 32 |
+
|
| 33 |
+
self._padding = padding
|
| 34 |
+
self._stride = stride
|
| 35 |
+
self._dilation = dilation
|
| 36 |
+
self._in_channels = in_channels
|
| 37 |
+
self._data_format = data_format
|
| 38 |
+
|
| 39 |
+
# 第一次卷积参数,没有偏置参数
|
| 40 |
+
filter_shape = [in_channels, 1] + self.convert_to_list(kernel_size, 2, 'kernel_size')
|
| 41 |
+
self.weight_conv = self.create_parameter(shape=filter_shape, attr=weight_attr)
|
| 42 |
+
|
| 43 |
+
# 第二次卷积参数
|
| 44 |
+
filter_shape = [out_channels, in_channels] + self.convert_to_list(1, 2, 'kernel_size')
|
| 45 |
+
self.weight_pointwise = self.create_parameter(shape=filter_shape, attr=weight_attr)
|
| 46 |
+
self.bias_pointwise = self.create_parameter(shape=[out_channels],
|
| 47 |
+
attr=bias_attr,
|
| 48 |
+
is_bias=True)
|
| 49 |
+
|
| 50 |
+
def convert_to_list(self, value, n, name, dtype=np.int):
|
| 51 |
+
if isinstance(value, dtype):
|
| 52 |
+
return [value, ] * n
|
| 53 |
+
else:
|
| 54 |
+
try:
|
| 55 |
+
value_list = list(value)
|
| 56 |
+
except TypeError:
|
| 57 |
+
raise ValueError("The " + name +
|
| 58 |
+
"'s type must be list or tuple. Received: " + str(
|
| 59 |
+
value))
|
| 60 |
+
if len(value_list) != n:
|
| 61 |
+
raise ValueError("The " + name + "'s length must be " + str(n) +
|
| 62 |
+
". Received: " + str(value))
|
| 63 |
+
for single_value in value_list:
|
| 64 |
+
try:
|
| 65 |
+
dtype(single_value)
|
| 66 |
+
except (ValueError, TypeError):
|
| 67 |
+
raise ValueError(
|
| 68 |
+
"The " + name + "'s type must be a list or tuple of " + str(
|
| 69 |
+
n) + " " + str(dtype) + " . Received: " + str(
|
| 70 |
+
value) + " "
|
| 71 |
+
"including element " + str(single_value) + " of type" + " "
|
| 72 |
+
+ str(type(single_value)))
|
| 73 |
+
return value_list
|
| 74 |
+
|
| 75 |
+
def forward(self, inputs):
|
| 76 |
+
conv_out = F.conv2d(inputs,
|
| 77 |
+
self.weight_conv,
|
| 78 |
+
padding=self._padding,
|
| 79 |
+
stride=self._stride,
|
| 80 |
+
dilation=self._dilation,
|
| 81 |
+
groups=self._in_channels,
|
| 82 |
+
data_format=self._data_format)
|
| 83 |
+
|
| 84 |
+
out = F.conv2d(conv_out,
|
| 85 |
+
self.weight_pointwise,
|
| 86 |
+
bias=self.bias_pointwise,
|
| 87 |
+
padding=0,
|
| 88 |
+
stride=1,
|
| 89 |
+
dilation=1,
|
| 90 |
+
groups=1,
|
| 91 |
+
data_format=self._data_format)
|
| 92 |
+
|
| 93 |
+
return out
|
| 94 |
+
class Encoder(paddle.nn.Layer):
|
| 95 |
+
def __init__(self, in_channels, out_channels):
|
| 96 |
+
super(Encoder, self).__init__()
|
| 97 |
+
|
| 98 |
+
self.relus = paddle.nn.LayerList(
|
| 99 |
+
[paddle.nn.ReLU() for i in range(2)])
|
| 100 |
+
self.separable_conv_01 = SeparableConv2D(in_channels,
|
| 101 |
+
out_channels,
|
| 102 |
+
kernel_size=3,
|
| 103 |
+
padding='same')
|
| 104 |
+
self.bns = paddle.nn.LayerList(
|
| 105 |
+
[paddle.nn.BatchNorm2D(out_channels) for i in range(2)])
|
| 106 |
+
|
| 107 |
+
self.separable_conv_02 = SeparableConv2D(out_channels,
|
| 108 |
+
out_channels,
|
| 109 |
+
kernel_size=3,
|
| 110 |
+
padding='same')
|
| 111 |
+
self.pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
| 112 |
+
self.residual_conv = paddle.nn.Conv2D(in_channels,
|
| 113 |
+
out_channels,
|
| 114 |
+
kernel_size=1,
|
| 115 |
+
stride=2,
|
| 116 |
+
padding='same')
|
| 117 |
+
|
| 118 |
+
def forward(self, inputs):
|
| 119 |
+
previous_block_activation = inputs
|
| 120 |
+
|
| 121 |
+
y = self.relus[0](inputs)
|
| 122 |
+
y = self.separable_conv_01(y)
|
| 123 |
+
y = self.bns[0](y)
|
| 124 |
+
y = self.relus[1](y)
|
| 125 |
+
y = self.separable_conv_02(y)
|
| 126 |
+
y = self.bns[1](y)
|
| 127 |
+
y = self.pool(y)
|
| 128 |
+
|
| 129 |
+
residual = self.residual_conv(previous_block_activation)
|
| 130 |
+
y = paddle.add(y, residual)
|
| 131 |
+
|
| 132 |
+
return y
|
| 133 |
+
class Decoder(paddle.nn.Layer):
|
| 134 |
+
def __init__(self, in_channels, out_channels):
|
| 135 |
+
super(Decoder, self).__init__()
|
| 136 |
+
|
| 137 |
+
self.relus = paddle.nn.LayerList(
|
| 138 |
+
[paddle.nn.ReLU() for i in range(2)])
|
| 139 |
+
self.conv_transpose_01 = paddle.nn.Conv2DTranspose(in_channels,
|
| 140 |
+
out_channels,
|
| 141 |
+
kernel_size=3,
|
| 142 |
+
padding=1)
|
| 143 |
+
self.conv_transpose_02 = paddle.nn.Conv2DTranspose(out_channels,
|
| 144 |
+
out_channels,
|
| 145 |
+
kernel_size=3,
|
| 146 |
+
padding=1)
|
| 147 |
+
self.bns = paddle.nn.LayerList(
|
| 148 |
+
[paddle.nn.BatchNorm2D(out_channels) for i in range(2)]
|
| 149 |
+
)
|
| 150 |
+
self.upsamples = paddle.nn.LayerList(
|
| 151 |
+
[paddle.nn.Upsample(scale_factor=2.0) for i in range(2)]
|
| 152 |
+
)
|
| 153 |
+
self.residual_conv = paddle.nn.Conv2D(in_channels,
|
| 154 |
+
out_channels,
|
| 155 |
+
kernel_size=1,
|
| 156 |
+
padding='same')
|
| 157 |
+
|
| 158 |
+
def forward(self, inputs):
|
| 159 |
+
previous_block_activation = inputs
|
| 160 |
+
|
| 161 |
+
y = self.relus[0](inputs)
|
| 162 |
+
y = self.conv_transpose_01(y)
|
| 163 |
+
y = self.bns[0](y)
|
| 164 |
+
y = self.relus[1](y)
|
| 165 |
+
y = self.conv_transpose_02(y)
|
| 166 |
+
y = self.bns[1](y)
|
| 167 |
+
y = self.upsamples[0](y)
|
| 168 |
+
|
| 169 |
+
residual = self.upsamples[1](previous_block_activation)
|
| 170 |
+
residual = self.residual_conv(residual)
|
| 171 |
+
|
| 172 |
+
y = paddle.add(y, residual)
|
| 173 |
+
|
| 174 |
+
return y
|
| 175 |
+
class PetNet(paddle.nn.Layer):
|
| 176 |
+
def __init__(self, num_classes):
|
| 177 |
+
super(PetNet, self).__init__()
|
| 178 |
+
|
| 179 |
+
self.conv_1 = paddle.nn.Conv2D(3, 32,
|
| 180 |
+
kernel_size=3,
|
| 181 |
+
stride=2,
|
| 182 |
+
padding='same')
|
| 183 |
+
self.bn = paddle.nn.BatchNorm2D(32)
|
| 184 |
+
self.relu = paddle.nn.ReLU()
|
| 185 |
+
|
| 186 |
+
in_channels = 32
|
| 187 |
+
self.encoders = []
|
| 188 |
+
self.encoder_list = [64, 128, 256]
|
| 189 |
+
self.decoder_list = [256, 128, 64, 32]
|
| 190 |
+
|
| 191 |
+
for out_channels in self.encoder_list:
|
| 192 |
+
block = self.add_sublayer('encoder_{}'.format(out_channels),
|
| 193 |
+
Encoder(in_channels, out_channels))
|
| 194 |
+
self.encoders.append(block)
|
| 195 |
+
in_channels = out_channels
|
| 196 |
+
|
| 197 |
+
self.decoders = []
|
| 198 |
+
|
| 199 |
+
for out_channels in self.decoder_list:
|
| 200 |
+
block = self.add_sublayer('decoder_{}'.format(out_channels),
|
| 201 |
+
Decoder(in_channels, out_channels))
|
| 202 |
+
self.decoders.append(block)
|
| 203 |
+
in_channels = out_channels
|
| 204 |
+
|
| 205 |
+
self.output_conv = paddle.nn.Conv2D(in_channels,
|
| 206 |
+
num_classes,
|
| 207 |
+
kernel_size=3,
|
| 208 |
+
padding='same')
|
| 209 |
+
|
| 210 |
+
def forward(self, inputs):
|
| 211 |
+
y = self.conv_1(inputs)
|
| 212 |
+
y = self.bn(y)
|
| 213 |
+
y = self.relu(y)
|
| 214 |
+
|
| 215 |
+
for encoder in self.encoders:
|
| 216 |
+
y = encoder(y)
|
| 217 |
+
|
| 218 |
+
for decoder in self.decoders:
|
| 219 |
+
y = decoder(y)
|
| 220 |
+
|
| 221 |
+
y = self.output_conv(y)
|
| 222 |
+
return y
|
| 223 |
+
IMAGE_SIZE = (512, 512)
|
| 224 |
+
num_classes = 2
|
| 225 |
+
network = PetNet(num_classes)
|
| 226 |
+
model = paddle.Model(network)
|
| 227 |
+
|
| 228 |
+
optimizer = paddle.optimizer.RMSProp(learning_rate=0.001, parameters=network.parameters())
|
| 229 |
+
layer_state_dict = paddle.load("mymodel.pdparams")
|
| 230 |
+
opt_state_dict = paddle.load("optimizer.pdopt")
|
| 231 |
+
|
| 232 |
+
network.set_state_dict(layer_state_dict)
|
| 233 |
+
optimizer.set_state_dict(opt_state_dict)
|
| 234 |
+
|
| 235 |
+
def FinalImage(mask,image):
|
| 236 |
+
# 这个函数的作用是把mask高斯模糊之后的遮罩和原始的image叠加起来
|
| 237 |
+
#输入 mask [0,255]的这招图
|
| 238 |
+
#image 必须无条件转化为512*512 三通道彩图
|
| 239 |
+
|
| 240 |
+
th = cv.threshold(mask,140,255,cv.THRESH_BINARY)[1]
|
| 241 |
+
blur = cv.GaussianBlur(th,(33,33), 15)
|
| 242 |
+
heatmap_img = cv.applyColorMap(blur, cv.COLORMAP_OCEAN)
|
| 243 |
+
Blendermap = cv.addWeighted(heatmap_img, 0.5, image, 1, 0)
|
| 244 |
+
return Blendermap
|
| 245 |
+
|
| 246 |
+
import gradio as gr
|
| 247 |
+
def Showsegmentation(image):
|
| 248 |
+
mask = paddle.argmax(network(paddle.to_tensor([((image - 127.5) / 127.5).transpose(2, 0, 1)]))[0], axis=0).numpy()
|
| 249 |
+
mask=mask.astype('uint8')*255
|
| 250 |
+
immask=cv.resize(mask, (512, 512))
|
| 251 |
+
image=cv.resize(image,(512,512))
|
| 252 |
+
blendmask=FinalImage(immask,image)
|
| 253 |
+
return blendmask
|
| 254 |
+
|
| 255 |
+
gr.Interface(fn=Showsegmentation, inputs="image", outputs="image").launch(share=True)
|