--- license: apache-2.0 base_model: - Qwen/Qwen-Image-Edit language: - en - zh library_name: diffusers pipeline_tag: image-to-image datasets: - OPPOer/X2Edit-Dataset ---

Qwen-Image-Edit-Pruning

GitHub
## Update - 2025/10/09: We release **[Qwen-Image-Edit-2509-Pruning-13B-4steps](https://huggingface.co/OPPOer/Qwen-Image-Edit-2509-Pruning)** - 2025/09/29: We release **[Qwen-Image-Edit-2509-Pruning-14B](https://huggingface.co/OPPOer/Qwen-Image-Edit-2509-Pruning)** - 2025/09/28: We release **[Qwen-Image-Edit-Pruning-13B-4steps](https://huggingface.co/OPPOer/Qwen-Image-Edit-Pruning)** ## Introduction This open-source project is based on Qwen-Image-Edit and has attempted model pruning, removing 20 layers while retaining the weights of 40 layers, resulting in a model size of 13.6B parameters. The pruned version will continue to be iterated upon. Please stay tuned.
## Quick Start Install the latest version of diffusers and pytorch ``` pip install torch pip install git+https://github.com/huggingface/diffusers ``` ### Qwen-Image-Edit-2509-14B Inference ```python import os import torch from PIL import Image from diffusers import QwenImageEditPlusPipeline model_name = f"OPPOer/Qwen-Image-Edit-2509-Pruning/Qwen-Image-Edit-2509-14B" pipeline = QwenImageEditPlusPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16) print("pipeline loaded") pipeline.to('cuda') pipeline.set_progress_bar_config(disable=None) image1 = Image.open("input1.jpg") image2 = Image.open("input2.jpg") prompt = "Let the ancient costume beauty in the second picture sit on the sofa in the first picture" inputs = { "image": [image1, image2], "prompt": prompt, "generator": torch.manual_seed(0), "true_cfg_scale": 4.0, "negative_prompt": " ", "num_inference_steps": 40, "guidance_scale": 1.0, "num_images_per_prompt": 1, } with torch.inference_mode(): output = pipeline(**inputs) output_image = output.images[0] output_image.save("output_image_edit_plus.png") print("image saved at", os.path.abspath("output_image_edit_plus.png")) ``` ### Qwen-Image-Edit-2509-13B Inference ```python import os import torch from PIL import Image from diffusers import QwenImageEditPlusPipeline model_name = f"OPPOer/Qwen-Image-Edit-2509-Pruning/Qwen-Image-Edit-2509-13B-4steps" pipeline = QwenImageEditPlusPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16) print("pipeline loaded") pipeline.to('cuda') pipeline.set_progress_bar_config(disable=None) image1 = Image.open("input1.jpg") image2 = Image.open("input2.jpg") prompt = "Let the ancient costume beauty in the second picture sit on the sofa in the first picture" inputs = { "image": [image1, image2], "prompt": prompt, "generator": torch.manual_seed(0), "true_cfg_scale": 1.0, "negative_prompt": " ", "num_inference_steps": 4, "guidance_scale": 1.0, "num_images_per_prompt": 1, } with torch.inference_mode(): output = pipeline(**inputs) output_image = output.images[0] output_image.save("output_image_edit_plus.png") print("image saved at", os.path.abspath("output_image_edit_plus.png")) ```