--- library_name: transformers base_model: princeton-nlp/Llama-3-Base-8B-SFT tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: Llama-3-dpo-5e-7-SFTed-paged_adamw_32bit-0.95 results: [] --- # Llama-3-dpo-5e-7-SFTed-paged_adamw_32bit-0.95 This is a model released from the preprint: [DPO-Shift: Shifting the Distribution of Direct Preference Optimization](https://arxiv.org/abs/2502.07599). Please refer to our [repository](https://github.com/Meaquadddd/DPO-Shift) for more details. This model is a fine-tuned version of [princeton-nlp/Llama-3-Base-8B-SFT](https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5600 - Rewards/chosen: -0.2594 - Rewards/rejected: -0.7680 - Rewards/accuracies: 0.7280 - Rewards/margins: 0.5087 - Logps/rejected: -344.3741 - Logps/chosen: -316.7488 - Logits/rejected: -0.8779 - Logits/chosen: -0.8397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6819 | 0.1047 | 50 | 0.6800 | 0.1050 | 0.0798 | 0.6400 | 0.0252 | -259.5905 | -280.3077 | -0.7374 | -0.6591 | | 0.6361 | 0.2094 | 100 | 0.6362 | 0.0108 | -0.1367 | 0.7080 | 0.1476 | -281.2423 | -289.7269 | -0.8269 | -0.7622 | | 0.5998 | 0.3141 | 150 | 0.5975 | -0.1439 | -0.4466 | 0.7120 | 0.3027 | -312.2311 | -305.2002 | -0.7868 | -0.7374 | | 0.5873 | 0.4187 | 200 | 0.5900 | -0.1226 | -0.4679 | 0.7160 | 0.3454 | -314.3644 | -303.0681 | -0.8278 | -0.7815 | | 0.5692 | 0.5234 | 250 | 0.5732 | -0.2556 | -0.6926 | 0.7300 | 0.4370 | -336.8325 | -316.3727 | -0.8732 | -0.8325 | | 0.5668 | 0.6281 | 300 | 0.5730 | -0.3147 | -0.7937 | 0.7160 | 0.4790 | -346.9373 | -322.2795 | -0.8503 | -0.8084 | | 0.5415 | 0.7328 | 350 | 0.5626 | -0.2087 | -0.6908 | 0.7320 | 0.4822 | -336.6547 | -311.6794 | -0.8694 | -0.8289 | | 0.5595 | 0.8375 | 400 | 0.5604 | -0.2196 | -0.7069 | 0.7300 | 0.4873 | -338.2576 | -312.7687 | -0.8715 | -0.8329 | | 0.5552 | 0.9422 | 450 | 0.5600 | -0.2594 | -0.7680 | 0.7280 | 0.5087 | -344.3741 | -316.7488 | -0.8779 | -0.8397 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1