Upload dpmpp-v2.patch
Browse files- patch/dpmpp-v2.patch +75 -0
patch/dpmpp-v2.patch
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
From 4394a62004260c3b9d781488e85f959a70910af1 Mon Sep 17 00:00:00 2001
|
| 2 |
+
From: Andrew Powers-Holmes <[email protected]>
|
| 3 |
+
Date: Sat, 8 Apr 2023 15:11:43 +1000
|
| 4 |
+
Subject: [PATCH] add DPMPP 2M V2
|
| 5 |
+
|
| 6 |
+
---
|
| 7 |
+
modules/sd_samplers_kdiffusion.py | 16 +++++++++-------
|
| 8 |
+
1 file changed, 9 insertions(+), 7 deletions(-)
|
| 9 |
+
|
| 10 |
+
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py
|
| 11 |
+
index 93f0e55a..9202f4d4 100644
|
| 12 |
+
--- a/modules/sd_samplers_kdiffusion.py
|
| 13 |
+
+++ b/modules/sd_samplers_kdiffusion.py
|
| 14 |
+
@@ -27,12 +27,12 @@ samplers_k_diffusion = [
|
| 15 |
+
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
|
| 16 |
+
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
|
| 17 |
+
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
| 18 |
+
+ ('DPM++ 2M v2', 'sample_dpmpp_2m_v2', ['k_dpmpp_2m'], {}),
|
| 19 |
+
+ ('DPM++ 2M Karras v2', 'sample_dpmpp_2m_v2', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
| 20 |
+
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
--
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
k_diffusion/sampling.py | 36 ++++++++++++++++++++++++++++++++++++
|
| 27 |
+
1 file changed, 36 insertions(+)
|
| 28 |
+
|
| 29 |
+
diff --git a/repositories/k-diffusion/k_diffusion/sampling.py b/repositories/k-diffusion/k_diffusion/sampling.py
|
| 30 |
+
index f050f88..1b0b282 100644
|
| 31 |
+
--- a/repositories/k-diffusion/k_diffusion/sampling.py
|
| 32 |
+
+++ b/repositories/k-diffusion/k_diffusion/sampling.py
|
| 33 |
+
@@ -605,4 +605,39 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
|
| 34 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
| 35 |
+
old_denoised = denoised
|
| 36 |
+
return x
|
| 37 |
+
+
|
| 38 |
+
+
|
| 39 |
+
[email protected]_grad()
|
| 40 |
+
+def sample_dpmpp_2m_v2(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
| 41 |
+
+ """DPM-Solver++(2M)V2."""
|
| 42 |
+
+ extra_args = {} if extra_args is None else extra_args
|
| 43 |
+
+ s_in = x.new_ones([x.shape[0]])
|
| 44 |
+
+ sigma_fn = lambda t: t.neg().exp()
|
| 45 |
+
+ t_fn = lambda sigma: sigma.log().neg()
|
| 46 |
+
+ old_denoised = None
|
| 47 |
+
+
|
| 48 |
+
+ for i in trange(len(sigmas) - 1, disable=disable):
|
| 49 |
+
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 50 |
+
+ if callback is not None:
|
| 51 |
+
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 52 |
+
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
| 53 |
+
+ h = t_next - t
|
| 54 |
+
+
|
| 55 |
+
+ t_min = min(sigma_fn(t_next), sigma_fn(t))
|
| 56 |
+
+ t_max = max(sigma_fn(t_next), sigma_fn(t))
|
| 57 |
+
+
|
| 58 |
+
+ if old_denoised is None or sigmas[i + 1] == 0:
|
| 59 |
+
+ x = (t_min / t_max) * x - (-h).expm1() * denoised
|
| 60 |
+
+ else:
|
| 61 |
+
+ h_last = t - t_fn(sigmas[i - 1])
|
| 62 |
+
+
|
| 63 |
+
+ h_min = min(h_last, h)
|
| 64 |
+
+ h_max = max(h_last, h)
|
| 65 |
+
+ r = h_max / h_min
|
| 66 |
+
+
|
| 67 |
+
+ h_d = (h_max + h_min) / 2
|
| 68 |
+
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
| 69 |
+
+ x = (t_min / t_max) * x - (-h_d).expm1() * denoised_d
|
| 70 |
+
+
|
| 71 |
+
+ old_denoised = denoised
|
| 72 |
+
+ return x
|
| 73 |
+
--
|
| 74 |
+
2.34.1
|
| 75 |
+
|