Upload folder using huggingface_hub
Browse files- checkpoint-32000/model.safetensors +3 -0
- model.py +128 -0
- test.py +51 -0
checkpoint-32000/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84ffdaba11e18c729c299a64ff916eea5ed8b578307b1882f89d7a740e516f48
|
| 3 |
+
size 379203176
|
model.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from transformers import AutoModel
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from torch import nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
class BCEWithLogitsLossLS(nn.Module):
|
| 13 |
+
def __init__(self, label_smoothing=0.1, pos_weight=None, reduction='mean'):
|
| 14 |
+
super(BCEWithLogitsLossLS, self).__init__()
|
| 15 |
+
assert 0 <= label_smoothing < 1, "label_smoothing value must be between 0 and 1."
|
| 16 |
+
self.label_smoothing = label_smoothing
|
| 17 |
+
self.reduction = reduction
|
| 18 |
+
self.bce_with_logits = nn.BCEWithLogitsLoss(pos_weight=pos_weight, reduction=reduction)
|
| 19 |
+
|
| 20 |
+
def forward(self, input, target):
|
| 21 |
+
if self.label_smoothing > 0:
|
| 22 |
+
positive_smoothed_labels = 1.0 - self.label_smoothing
|
| 23 |
+
negative_smoothed_labels = self.label_smoothing
|
| 24 |
+
target = target * positive_smoothed_labels + \
|
| 25 |
+
(1 - target) * negative_smoothed_labels
|
| 26 |
+
|
| 27 |
+
loss = self.bce_with_logits(input, target)
|
| 28 |
+
return loss
|
| 29 |
+
|
| 30 |
+
class WavLMForEndpointing(nn.Module):
|
| 31 |
+
def __init__(self, config, n_trainable_layers=6):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.wavlm = AutoModel.from_pretrained('microsoft/wavlm-base-plus', config=config)
|
| 34 |
+
self.config = config
|
| 35 |
+
self.n_trainable_layers = n_trainable_layers
|
| 36 |
+
|
| 37 |
+
for param in self.wavlm.parameters():
|
| 38 |
+
param.requires_grad = False
|
| 39 |
+
|
| 40 |
+
if self.n_trainable_layers > 0:
|
| 41 |
+
for i in range(self.n_trainable_layers):
|
| 42 |
+
for param in self.wavlm.encoder.layers[-(i+1)].parameters():
|
| 43 |
+
param.requires_grad = True
|
| 44 |
+
|
| 45 |
+
self.pool_attention = nn.Sequential(
|
| 46 |
+
nn.Linear(config.hidden_size, 256),
|
| 47 |
+
nn.Tanh(),
|
| 48 |
+
nn.Linear(256, 1)
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
self.classifier = nn.Sequential(
|
| 52 |
+
nn.Linear(config.hidden_size, 256),
|
| 53 |
+
nn.LayerNorm(256),
|
| 54 |
+
nn.GELU(),
|
| 55 |
+
nn.Dropout(0.1),
|
| 56 |
+
nn.Linear(256, 64),
|
| 57 |
+
nn.LayerNorm(64),
|
| 58 |
+
nn.GELU(),
|
| 59 |
+
nn.Linear(64, 1)
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
for module in self.classifier:
|
| 63 |
+
if isinstance(module, nn.Linear):
|
| 64 |
+
module.weight.data.normal_(mean=0.0, std=0.1)
|
| 65 |
+
if module.bias is not None:
|
| 66 |
+
module.bias.data.zero_()
|
| 67 |
+
|
| 68 |
+
for module in self.pool_attention:
|
| 69 |
+
if isinstance(module, nn.Linear):
|
| 70 |
+
module.weight.data.normal_(mean=0.0, std=0.1)
|
| 71 |
+
if module.bias is not None:
|
| 72 |
+
module.bias.data.zero_()
|
| 73 |
+
|
| 74 |
+
def attention_pool(self, hidden_states, attention_mask):
|
| 75 |
+
attention_weights = self.pool_attention(hidden_states)
|
| 76 |
+
|
| 77 |
+
if attention_mask is None:
|
| 78 |
+
raise ValueError("attention_mask must be provided for attention pooling")
|
| 79 |
+
|
| 80 |
+
attention_weights = attention_weights + (
|
| 81 |
+
(1.0 - attention_mask.unsqueeze(-1).to(attention_weights.dtype)) * -1e9
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
attention_weights = F.softmax(attention_weights, dim=1)
|
| 85 |
+
|
| 86 |
+
# Apply attention to hidden states
|
| 87 |
+
weighted_sum = torch.sum(hidden_states * attention_weights, dim=1)
|
| 88 |
+
|
| 89 |
+
return weighted_sum
|
| 90 |
+
|
| 91 |
+
def forward(self, input_values, attention_mask=None, labels=None):
|
| 92 |
+
outputs = self.wavlm(input_values, attention_mask=attention_mask)
|
| 93 |
+
hidden_states = outputs[0]
|
| 94 |
+
|
| 95 |
+
if attention_mask is not None:
|
| 96 |
+
input_length = attention_mask.size(1)
|
| 97 |
+
hidden_length = hidden_states.size(1)
|
| 98 |
+
ratio = input_length / hidden_length
|
| 99 |
+
indices = (torch.arange(hidden_length, device=attention_mask.device) * ratio).long()
|
| 100 |
+
attention_mask = attention_mask[:, indices]
|
| 101 |
+
attention_mask = attention_mask.bool()
|
| 102 |
+
else:
|
| 103 |
+
attention_mask = None
|
| 104 |
+
|
| 105 |
+
pooled = self.attention_pool(hidden_states, attention_mask)
|
| 106 |
+
|
| 107 |
+
logits = self.classifier(pooled)
|
| 108 |
+
|
| 109 |
+
if torch.isnan(logits).any():
|
| 110 |
+
raise ValueError("NaN values detected in logits")
|
| 111 |
+
|
| 112 |
+
if labels is not None:
|
| 113 |
+
pos_weight = ((labels == 0).sum() / (labels == 1).sum()).clamp(min=0.1, max=10.0)
|
| 114 |
+
loss_fct = BCEWithLogitsLossLS(pos_weight=pos_weight)
|
| 115 |
+
labels = labels.float()
|
| 116 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
| 117 |
+
|
| 118 |
+
l2_lambda = 0.01
|
| 119 |
+
l2_reg = torch.tensor(0., device=logits.device)
|
| 120 |
+
for param in self.classifier.parameters():
|
| 121 |
+
l2_reg += torch.norm(param)
|
| 122 |
+
loss += l2_lambda * l2_reg
|
| 123 |
+
|
| 124 |
+
probs = torch.sigmoid(logits.detach())
|
| 125 |
+
return {"loss": loss, "logits": probs}
|
| 126 |
+
|
| 127 |
+
probs = torch.sigmoid(logits)
|
| 128 |
+
return {"logits": probs}
|
test.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from model import WavLMForEndpointing
|
| 2 |
+
import torchaudio
|
| 3 |
+
import transformers
|
| 4 |
+
import numpy as np
|
| 5 |
+
from safetensors import safe_open
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
MODEL_NAME = 'microsoft/wavlm-base-plus'
|
| 9 |
+
|
| 10 |
+
processor = transformers.AutoFeatureExtractor.from_pretrained(
|
| 11 |
+
MODEL_NAME
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
|
| 15 |
+
model = WavLMForEndpointing(config)
|
| 16 |
+
|
| 17 |
+
checkpoint_path = "/home/nikita/wavlm-endpointing-model/checkpoint-29000/model.safetensors"
|
| 18 |
+
|
| 19 |
+
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
|
| 20 |
+
state_dict = {key: f.get_tensor(key) for key in f.keys()}
|
| 21 |
+
|
| 22 |
+
model.load_state_dict(state_dict)
|
| 23 |
+
print("Веса успешно загружены из safetensors")
|
| 24 |
+
|
| 25 |
+
model.eval()
|
| 26 |
+
|
| 27 |
+
while True:
|
| 28 |
+
print('1234')
|
| 29 |
+
audio_path = str(input())
|
| 30 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
| 31 |
+
|
| 32 |
+
if sample_rate != 16000:
|
| 33 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
| 34 |
+
waveform = resampler(waveform)
|
| 35 |
+
|
| 36 |
+
if waveform.shape[0] > 1:
|
| 37 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
inputs = processor(
|
| 41 |
+
waveform.squeeze().numpy(),
|
| 42 |
+
sampling_rate=16000,
|
| 43 |
+
return_tensors="pt",
|
| 44 |
+
padding=False,
|
| 45 |
+
truncation=False
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
result = model(**inputs)
|
| 50 |
+
|
| 51 |
+
print(result)
|