--- language: - en tags: - ColBERT - PyLate - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:640000 - loss:Distillation base_model: NeuML/bert-hash-femto datasets: - lightonai/ms-marco-en-bge-gemma pipeline_tag: sentence-similarity library_name: PyLate license: apache-2.0 metrics: - MaxSim_accuracy@1 - MaxSim_accuracy@3 - MaxSim_accuracy@5 - MaxSim_accuracy@10 - MaxSim_precision@1 - MaxSim_precision@3 - MaxSim_precision@5 - MaxSim_precision@10 - MaxSim_recall@1 - MaxSim_recall@3 - MaxSim_recall@5 - MaxSim_recall@10 - MaxSim_ndcg@10 - MaxSim_mrr@10 - MaxSim_map@100 model-index: - name: ColBERT MUVERA Femto results: - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoClimateFEVER type: NanoClimateFEVER metrics: - type: MaxSim_accuracy@1 value: 0.14 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.32 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.36 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.52 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.14 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.11333333333333333 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.07600000000000001 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.05600000000000001 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.085 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.165 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.19166666666666668 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.25233333333333335 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.19115874409066272 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.2408333333333333 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.1462389973257929 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoDBPedia type: NanoDBPedia metrics: - type: MaxSim_accuracy@1 value: 0.7 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.82 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.82 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.84 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.7 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.5933333333333333 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.548 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.456 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.0728506527388449 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.13076941366456654 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.17827350013263704 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.2781635119304686 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.5510945084552747 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.7555555555555555 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.39128533545834626 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoFEVER type: NanoFEVER metrics: - type: MaxSim_accuracy@1 value: 0.62 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.76 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.84 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.86 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.62 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.26666666666666666 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.184 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.09399999999999999 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.5766666666666667 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.7366666666666667 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.83 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.85 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.7249306483092258 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.6976666666666665 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.679664802101873 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoFiQA2018 type: NanoFiQA2018 metrics: - type: MaxSim_accuracy@1 value: 0.28 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.34 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.44 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.48 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.28 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.13333333333333333 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.10800000000000001 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.062 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.13555555555555557 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.19755555555555557 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.2666349206349206 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.2994920634920635 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.2502784944505909 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.33252380952380944 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.20907273372726215 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoHotpotQA type: NanoHotpotQA metrics: - type: MaxSim_accuracy@1 value: 0.76 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.84 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.9 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.92 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.76 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.36666666666666664 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.252 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.136 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.38 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.55 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.63 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.68 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.6514325561331983 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.8098333333333333 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.5738665952275315 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: MaxSim_accuracy@1 value: 0.32 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.48 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.6 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.7 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.32 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.16 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.12000000000000002 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.07 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.32 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.48 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.6 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.7 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.4946222844793249 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.43052380952380953 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.4408050908765128 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoNFCorpus type: NanoNFCorpus metrics: - type: MaxSim_accuracy@1 value: 0.32 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.42 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.52 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.62 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.32 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.2866666666666666 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.26799999999999996 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.21000000000000005 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.01921769353070746 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.03782391241260524 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.05411010345369293 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.09349869834347448 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.2481257474345093 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.3995793650793651 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.08737709081330662 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: MaxSim_accuracy@1 value: 0.28 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.52 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.58 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.74 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.28 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.1733333333333333 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.12000000000000002 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.07600000000000001 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.26 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.49 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.56 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.7 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.4828411530427104 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.4289603174603174 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.41150699780701017 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoQuoraRetrieval type: NanoQuoraRetrieval metrics: - type: MaxSim_accuracy@1 value: 0.74 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.84 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.88 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.9 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.74 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.30666666666666664 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.21199999999999997 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.11599999999999998 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.674 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.784 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.8413333333333333 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.8626666666666667 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.8016479127266055 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.7995238095238095 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.7733654571274 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoSCIDOCS type: NanoSCIDOCS metrics: - type: MaxSim_accuracy@1 value: 0.3 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.44 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.52 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.62 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.3 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.18 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.14400000000000002 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.092 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.061000000000000006 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.11100000000000002 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.14700000000000002 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.18799999999999997 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.198564235862039 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.3978253968253968 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.13670583023266375 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoArguAna type: NanoArguAna metrics: - type: MaxSim_accuracy@1 value: 0.14 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.24 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.28 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.36 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.14 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.07999999999999999 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.05600000000000001 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.036000000000000004 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.14 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.24 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.28 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.36 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.2444065884095295 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.20804761904761904 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.21989999402599436 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoSciFact type: NanoSciFact metrics: - type: MaxSim_accuracy@1 value: 0.36 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.5 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.6 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.62 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.36 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.18666666666666668 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.14 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.07400000000000001 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.325 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.49 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.59 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.62 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.4856083424090788 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.44449999999999995 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.44726079800650204 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoTouche2020 type: NanoTouche2020 metrics: - type: MaxSim_accuracy@1 value: 0.6530612244897959 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.9591836734693877 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.9795918367346939 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 1.0 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.6530612244897959 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.6054421768707483 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.5673469387755103 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.45918367346938777 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.04308959031413618 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.11831839494199368 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.1804772716223025 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.2842813442856462 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.5191595399345652 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.8064625850340136 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.32574548665687825 name: Maxsim Map@100 - task: type: nano-beir name: Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: MaxSim_accuracy@1 value: 0.4317739403453689 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.5753218210361067 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.6399686028257457 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.7061538461538461 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.4317739403453689 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.26554683411826263 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.2150266875981162 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.14901412872841444 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.2378753968312239 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.34854876486472214 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.41149967660335024 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.4744950475424349 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.44952851967210117 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.5193719693005406 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.3725227084143902 name: Maxsim Map@100 --- # ColBERT MUVERA Femto This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [neuml/bert-hash-femto](https://huggingface.co/neuml/bert-hash-femto) on the [msmarco-en-bge-gemma unnormalized split](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma) dataset. It maps sentences & paragraphs to sequences of 50-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator. This model is trained with un-normalized scores, making it compatible with [MUVERA fixed-dimensional encoding](https://arxiv.org/abs/2405.19504). ## Usage (txtai) This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG). _Note: txtai 9.0+ is required for late interaction model support_ ```python import txtai embeddings = txtai.Embeddings( sparse="neuml/colbert-muvera-femto", content=True ) embeddings.index(documents()) # Run a query embeddings.search("query to run") ``` Late interaction models excel as reranker pipelines. ```python from txtai.pipeline import Reranker, Similarity similarity = Similarity(path="neuml/colbert-muvera-femto", lateencode=True) ranker = Reranker(embeddings, similarity) ranker("query to run") ``` ## Usage (PyLate) Alternatively, the model can be loaded with [PyLate](https://github.com/lightonai/pylate). ```python from pylate import rank, models queries = [ "query A", "query B", ] documents = [ ["document A", "document B"], ["document 1", "document C", "document B"], ] documents_ids = [ [1, 2], [1, 3, 2], ] model = models.ColBERT( model_name_or_path="neuml/colbert-muvera-femto", ) queries_embeddings = model.encode( queries, is_query=True, ) documents_embeddings = model.encode( documents, is_query=False, ) reranked_documents = rank.rerank( documents_ids=documents_ids, queries_embeddings=queries_embeddings, documents_embeddings=documents_embeddings, ) ``` ### Full Model Architecture ``` ColBERT( (0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: BertHashModel (1): Dense({'in_features': 50, 'out_features': 50, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Evaluation ### BEIR Subset The following table shows a subset of BEIR scored with the [txtai benchmarks script](https://github.com/neuml/txtai/blob/master/examples/benchmarks.py). Scores reported are `ndcg@10` and grouped into the following three categories. #### FULL multi-vector maxsim | Model | Parameters | NFCorpus | SciDocs | SciFact | Average | |:------------------|:-----------|:---------|:---------|:--------|:--------| | [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.3165 | 0.1497 | 0.6456 | 0.3706 | | [**ColBERT MUVERA Femto**](https://huggingface.co/neuml/colbert-muvera-femto) | **0.2M** | **0.2513** | **0.0870** | **0.4710** | **0.2698** | | [ColBERT MUVERA Pico](https://huggingface.co/neuml/colbert-muvera-pico) | 0.4M | 0.3005 | 0.1117 | 0.6452 | 0.3525 | | [ColBERT MUVERA Nano](https://huggingface.co/neuml/colbert-muvera-nano) | 0.9M | 0.3180 | 0.1262 | 0.6576 | 0.3673 | | [ColBERT MUVERA Micro](https://huggingface.co/neuml/colbert-muvera-micro) | 4M | 0.3235 | 0.1244 | 0.6676 | 0.3718 | #### MUVERA encoding + maxsim re-ranking of the top 100 results per MUVERA paper | Model | Parameters | NFCorpus | SciDocs | SciFact | Average | |:------------------|:-----------|:---------|:---------|:--------|:--------| | [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.3025 | 0.1538 | 0.6278 | 0.3614 | | [**ColBERT MUVERA Femto**](https://huggingface.co/neuml/colbert-muvera-femto) | **0.2M** | **0.2316** | **0.0858** | **0.4641** | **0.2605** | | [ColBERT MUVERA Pico](https://huggingface.co/neuml/colbert-muvera-pico) | 0.4M | 0.2821 | 0.1004 | 0.6090 | 0.3305 | | [ColBERT MUVERA Nano](https://huggingface.co/neuml/colbert-muvera-nano) | 0.9M | 0.2996 | 0.1201 | 0.6249 | 0.3482 | | [ColBERT MUVERA Micro](https://huggingface.co/neuml/colbert-muvera-micro) | 4M | 0.3095 | 0.1228 | 0.6464 | 0.3596 | #### MUVERA encoding only | Model | Parameters | NFCorpus | SciDocs | SciFact | Average | |:------------------|:-----------|:---------|:---------|:--------|:--------| | [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.2356 | 0.1229 | 0.5002 | 0.2862 | | [**ColBERT MUVERA Femto**](https://huggingface.co/neuml/colbert-muvera-femto) | **0.2M** | **0.1851** | **0.0411** | **0.3518** | **0.1927** | | [ColBERT MUVERA Pico](https://huggingface.co/neuml/colbert-muvera-pico) | 0.4M | 0.1926 | 0.0564 | 0.4424 | 0.2305 | | [ColBERT MUVERA Nano](https://huggingface.co/neuml/colbert-muvera-nano) | 0.9M | 0.2355 | 0.0807 | 0.4904 | 0.2689 | | [ColBERT MUVERA Micro](https://huggingface.co/neuml/colbert-muvera-micro) | 4M | 0.2348 | 0.0882 | 0.4875 | 0.2702 | _Note: The scores reported don't match scores reported in the respective papers due to different default settings in the txtai benchmark scripts._ As noted earlier, models trained with min-max score normalization don't perform well with MUVERA encoding. See this [GitHub Issue](https://github.com/lightonai/pylate/issues/142) for more. **This model is only 250K parameters with a file size of 950K. Keeping that in mind, it's surprising how decent the scores are!** ### Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator | Metric | Value | |:--------------------|:-----------| | MaxSim_accuracy@1 | 0.4318 | | MaxSim_accuracy@3 | 0.5753 | | MaxSim_accuracy@5 | 0.64 | | MaxSim_accuracy@10 | 0.7062 | | MaxSim_precision@1 | 0.4318 | | MaxSim_precision@3 | 0.2655 | | MaxSim_precision@5 | 0.215 | | MaxSim_precision@10 | 0.149 | | MaxSim_recall@1 | 0.2379 | | MaxSim_recall@3 | 0.3485 | | MaxSim_recall@5 | 0.4115 | | MaxSim_recall@10 | 0.4745 | | **MaxSim_ndcg@10** | **0.4495** | | MaxSim_mrr@10 | 0.5194 | | MaxSim_map@100 | 0.3725 | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `learning_rate`: 0.0003 - `num_train_epochs`: 1 - `warmup_ratio`: 0.05 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0003 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `parallelism_config`: None - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `project`: huggingface - `trackio_space_id`: trackio - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: no - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: True - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Framework Versions - Python: 3.10.18 - Sentence Transformers: 4.0.2 - PyLate: 1.3.2 - Transformers: 4.57.0 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.1 - Datasets: 4.1.1 - Tokenizers: 0.22.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084" } ``` #### PyLate ```bibtex @misc{PyLate, title={PyLate: Flexible Training and Retrieval for Late Interaction Models}, author={Chaffin, Antoine and Sourty, Raphaƫl}, url={https://github.com/lightonai/pylate}, year={2024} } ```