--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers base_model: thomas-sounack/BioClinical-ModernBERT-base language: en license: apache-2.0 --- # BioClinical ModernBERT Embeddings This is a [BioClinical ModernBERT](https://huggingface.co/thomas-sounack/BioClinical-ModernBERT-base) model fined-tuned using [sentence-transformers](https://www.SBERT.net). It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The training dataset was generated using a random sample of [PubMed](https://pubmed.ncbi.nlm.nih.gov/) title-abstract pairs along with similar title pairs. Given that this is a [ModernBERT](https://huggingface.co/answerdotai/ModernBERT-base) model, it supports a longer context length of up to `8,192` tokens vs the `512` tokens supported by standard BERT models. ## Usage (txtai) This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG). ```python import txtai embeddings = txtai.Embeddings(path="neuml/bioclinical-modernbert-base-embeddings", content=True) embeddings.index(documents()) # Run a query embeddings.search("query to run") ``` ## Usage (Sentence-Transformers) Alternatively, the model can be loaded with [sentence-transformers](https://www.SBERT.net). ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer("neuml/bioclinical-modernbert-base-embeddings") embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (Hugging Face Transformers) The model can also be used directly with Transformers. ```python from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - Take attention mask into account for correct averaging def meanpooling(output, mask): embeddings = output[0] # First element of model_output contains all token embeddings mask = mask.unsqueeze(-1).expand(embeddings.size()).float() return torch.sum(embeddings * mask, 1) / torch.clamp(mask.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("neuml/bioclinical-modernbert-base-embeddings") model = AutoModel.from_pretrained("neuml/bioclinical-modernbert-base-embeddings") # Tokenize sentences inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): output = model(**inputs) # Perform pooling. In this case, mean pooling. embeddings = meanpooling(output, inputs['attention_mask']) print("Sentence embeddings:") print(embeddings) ``` ## Evaluation Results Performance of this model compared to the top base models on the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard) is shown below. A popular smaller model was also evaluated along with the most downloaded PubMed similarity model on the Hugging Face Hub. The following datasets were used to evaluate model performance. - [PubMed QA](https://huggingface.co/datasets/qiaojin/PubMedQA) - Subset: pqa_labeled, Split: train, Pair: (question, long_answer) - [PubMed Subset](https://huggingface.co/datasets/awinml/pubmed_abstract_3_1k) - Split: test, Pair: (title, text) - [PubMed Summary](https://huggingface.co/datasets/armanc/scientific_papers) - Subset: pubmed, Split: validation, Pair: (article, abstract) Evaluation results are shown below. The [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) is used as the evaluation metric. | Model | PubMed QA | PubMed Subset | PubMed Summary | Average | | ----------------------------------------------------------------------------- | --------- | ------------- | -------------- | --------- | | [all-MiniLM-L6-v2](https://hf.co/sentence-transformers/all-MiniLM-L6-v2) | 90.40 | 95.92 | 94.07 | 93.46 | | [**bioclinical-modernbert-base-embeddings**](https://hf.co/neuml/bioclinical-modernbert-base-embeddings) | **92.49** | **97.10** | **97.04** | **95.54** | | [bge-base-en-v1.5](https://hf.co/BAAI/bge-base-en-v1.5) | 91.02 | 95.82 | 94.49 | 93.78 | | [gte-base](https://hf.co/thenlper/gte-base) | 92.97 | 96.90 | 96.24 | 95.37 | | [pubmedbert-base-embeddings](https://hf.co/neuml/pubmedbert-base-embeddings) | 93.27 | 97.00 | 96.58 | 95.62 | | [S-PubMedBert-MS-MARCO](https://hf.co/pritamdeka/S-PubMedBert-MS-MARCO) | 90.86 | 93.68 | 93.54 | 92.69 | Note that while this model scores slightly lower than the PubMedBERT embeddings model, it supports a longer context of `8,192` tokens vs `512`. ## Training The model was trained with the parameters: **DataLoader**: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit() method: ``` { "epochs": 1, "evaluation_steps": 2000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## More Information This model was trained using the same method described in [this article](https://medium.com/neuml/embeddings-for-medical-literature-74dae6abf5e0).