--- license: other --- # xLSTM-7B This xLSTM-7B was pre-trained on the DCLM and selected high-quality data for in a total of approx. 2.3 T tokens using the `xlstm-jax` framework. ## How to use it First, install `xlstm`, which now uses the `mlstm_kernels` package for triton kernels (tested on python 3.11): ```bash pip install xlstm pip install accelerate pip install 'transformers @ git+https://github.com/huggingface/transformers.git@main' ``` If you get an error regarding triton library: ```bash pip install 'triton @ git+https://github.com/triton-lang/triton.git@main' ``` Use this model as: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch xlstm = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b", device_map="auto") # this is a fork of EleutherAI/gpt-neox-20b tokenizer = AutoTokenizer.from_pretrained("NX-AI/xLSTM-7b") tokens = tokenizer("Explain quantum computing in simple terms.", return_tensors='pt')['input_ids'].to(device="cuda") # Get the BOS token ID from the tokenizer bos_id = tokenizer.bos_token_id # Prepend BOS bos_tensor = torch.tensor([[bos_id]], device=tokens.device, dtype=tokens.dtype) tokens_with_bos = torch.cat([bos_tensor, tokens], dim=1) out = xlstm.generate(tokens_with_bos, max_new_tokens=20) print(tokenizer.decode(out[0])) ``` If you cannot or do not want to use the triton kernels, you can change them to native PyTorch implementations: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig import torch xlstm_config = AutoConfig.from_pretrained("NX-AI/xLSTM-7b") xlstm_config.step_kernel = "native" xlstm_config.chunkwise_kernel = "chunkwise--native_autograd" xlstm_config.sequence_kernel = "native_sequence__native" xlstm = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b", config=xlstm_config, device_map="auto") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("NX-AI/xLSTM-7b") # Your prompt prompt = "Explain quantum computing in simple terms." # Tokenize and send to the same device as the model inputs = tokenizer(prompt, return_tensors="pt")['input_ids'].to(xlstm.device) # Get the BOS token ID from the tokenizer bos_id = tokenizer.bos_token_id # Prepend BOS bos_tensor = torch.tensor([[bos_id]], device=xlstm.device, dtype=inputs.dtype) tokens_with_bos = torch.cat([bos_tensor, inputs], dim=1) # Generate outputs = xlstm.generate( tokens_with_bos, max_new_tokens=200, # adjust for output length temperature=0.7, # randomness top_p=0.9, # nucleus sampling do_sample=True ) # Decode and print print(tokenizer.decode(outputs[0])) # verify selected kernels from pprint import pprint pprint(xlstm.backbone.blocks[0].mlstm_layer.config) ``` ## Speed results Generation Speed using `torch.cuda.graph` and `torch.compile` optimizations on one NVIDIA H100: ![generation speed](plot_tokens_per_sec.svg) ## Performance ![mmlu_train_token](MMLUvsTrainToken.svg) Using HuggingFace's `lm_eval`: | BBH | MMLU-Pro | Math | MUSR | GPQA | IfEval | |-------|----------|--------|------|------|--------| | 0.381 | 0.242 | 0.036 | 0.379|0.280 | 0.244 | Using HuggingFace's `lighteval` in the Leaderboard-v1 settings: |Arc-Challenge (25-shot) |MMLU (5-shot) |Hellaswag (10-shot)|Winogrande (5-shot) |TruthfulQA (0-shot) |GSM8k (5-shot) |OpenbookQA (5-shot) | PiQA (5-shot)| |------------------------|--------------|-------------------|--------------------|--------------------|---------------|--------------------|--------------| | 0.584 |0.589 | 0.710 |0.742 | 0.420 | 0.004 | 0.443 | 0.817 | ## License NXAI Community License (see `LICENSE` file)