Update README.md
Browse files
README.md
CHANGED
|
@@ -109,6 +109,115 @@ _Few-shot is disabled for Jellyfish models._
|
|
| 109 |
<|start_header_id|>assistant<|end_header_id|>
|
| 110 |
```
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
## Prompts
|
| 113 |
|
| 114 |
We provide the prompts used for both fine-tuning and inference.
|
|
|
|
| 109 |
<|start_header_id|>assistant<|end_header_id|>
|
| 110 |
```
|
| 111 |
|
| 112 |
+
## Training Details
|
| 113 |
+
|
| 114 |
+
### Training Method
|
| 115 |
+
|
| 116 |
+
We used LoRA to speed up the training process, targeting the q_proj, k_proj, v_proj, and o_proj modules.
|
| 117 |
+
|
| 118 |
+
## Uses
|
| 119 |
+
|
| 120 |
+
To accelerate the inference, we strongly recommend running Jellyfish using [vLLM](https://github.com/vllm-project/vllm).
|
| 121 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 122 |
+
|
| 123 |
+
### Python Script
|
| 124 |
+
We provide two simple Python code examples for inference using the Jellyfish model.
|
| 125 |
+
|
| 126 |
+
#### Using Transformers and Torch Modules
|
| 127 |
+
<div style="height: auto; max-height: 400px; overflow-y: scroll;">
|
| 128 |
+
|
| 129 |
+
```python
|
| 130 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 131 |
+
import torch
|
| 132 |
+
|
| 133 |
+
if torch.cuda.is_available():
|
| 134 |
+
device = "cuda"
|
| 135 |
+
else:
|
| 136 |
+
device = "cpu"
|
| 137 |
+
|
| 138 |
+
# Model will be automatically downloaded from HuggingFace model hub if not cached.
|
| 139 |
+
# Model files will be cached in "~/.cache/huggingface/hub/models--NECOUDBFM--Jellyfish/" by default.
|
| 140 |
+
# You can also download the model manually and replace the model name with the path to the model files.
|
| 141 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 142 |
+
"NECOUDBFM/Jellyfish",
|
| 143 |
+
torch_dtype=torch.float16,
|
| 144 |
+
device_map="auto",
|
| 145 |
+
)
|
| 146 |
+
tokenizer = AutoTokenizer.from_pretrained("NECOUDBFM/Jellyfish")
|
| 147 |
+
|
| 148 |
+
system_message = "You are an AI assistant that follows instruction extremely well. Help as much as you can."
|
| 149 |
+
|
| 150 |
+
# You need to define the user_message variable based on the task and the data you want to test on.
|
| 151 |
+
user_message = "Hello, world."
|
| 152 |
+
|
| 153 |
+
prompt = f"<|start_header_id|>system<|end_header_id|>{system message}<|eot_id|>\n<|start_header_id|>user<|end_header_id|>{user_message}<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>"
|
| 154 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 155 |
+
input_ids = inputs["input_ids"].to(device)
|
| 156 |
+
|
| 157 |
+
# You can modify the sampling parameters according to your needs.
|
| 158 |
+
generation_config = GenerationConfig(
|
| 159 |
+
do_samples=True,
|
| 160 |
+
temperature=0.35,
|
| 161 |
+
top_p=0.9,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
with torch.no_grad():
|
| 165 |
+
generation_output = model.generate(
|
| 166 |
+
input_ids=input_ids,
|
| 167 |
+
generation_config=generation_config,
|
| 168 |
+
return_dict_in_generate=True,
|
| 169 |
+
output_scores=True,
|
| 170 |
+
max_new_tokens=1024,
|
| 171 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 172 |
+
repetition_penalty=1.15,
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
output = generation_output[0]
|
| 176 |
+
response = tokenizer.decode(
|
| 177 |
+
output[:, input_ids.shape[-1] :][0], skip_special_tokens=True
|
| 178 |
+
).strip()
|
| 179 |
+
|
| 180 |
+
print(response)
|
| 181 |
+
|
| 182 |
+
```
|
| 183 |
+
</div>
|
| 184 |
+
|
| 185 |
+
#### Using vLLM
|
| 186 |
+
<div style="height: auto; max-height: 400px; overflow-y: scroll;">
|
| 187 |
+
|
| 188 |
+
```python
|
| 189 |
+
from vllm import LLM, SamplingParams
|
| 190 |
+
|
| 191 |
+
# To use vllm for inference, you need to download the model files either using HuggingFace model hub or manually.
|
| 192 |
+
# You should modify the path to the model according to your local environment.
|
| 193 |
+
path_to_model = (
|
| 194 |
+
"/workspace/models/Jellyfish"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
model = LLM(model=path_to_model)
|
| 198 |
+
|
| 199 |
+
# You can modify the sampling parameters according to your needs.
|
| 200 |
+
# Caution: The stop parameter should not be changed.
|
| 201 |
+
sampling_params = SamplingParams(
|
| 202 |
+
temperature=0.35,
|
| 203 |
+
top_p=0.9,
|
| 204 |
+
max_tokens=1024,
|
| 205 |
+
stop=["<|eot_id|>"],
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
system_message = "You are an AI assistant that follows instruction extremely well. Help as much as you can."
|
| 209 |
+
|
| 210 |
+
# You need to define the user_message variable based on the task and the data you want to test on.
|
| 211 |
+
user_message = "Hello, world."
|
| 212 |
+
|
| 213 |
+
prompt = ff"<|start_header_id|>system<|end_header_id|>{system message}<|eot_id|>\n<|start_header_id|>user<|end_header_id|>{user_message}<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>"
|
| 214 |
+
outputs = model.generate(prompt, sampling_params)
|
| 215 |
+
response = outputs[0].outputs[0].text.strip()
|
| 216 |
+
print(response)
|
| 217 |
+
|
| 218 |
+
```
|
| 219 |
+
</div>
|
| 220 |
+
|
| 221 |
## Prompts
|
| 222 |
|
| 223 |
We provide the prompts used for both fine-tuning and inference.
|