Update README.md (#1)
Browse files- Update README.md (6e6e49ef6a08706f398ec79f1ee8d439d5b2144c)
Co-authored-by: Ali Motahharynia <[email protected]>
README.md
CHANGED
|
@@ -3,202 +3,123 @@ base_model: meta-llama/Llama-3.1-8B-Instruct
|
|
| 3 |
library_name: peft
|
| 4 |
datasets:
|
| 5 |
- Moreza009/drug_approval_prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
---
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
## Model Details
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
- **Developed by:** [More Information Needed]
|
| 23 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 24 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 25 |
-
- **Model type:** [More Information Needed]
|
| 26 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 27 |
-
- **License:** [More Information Needed]
|
| 28 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 29 |
-
|
| 30 |
-
### Model Sources [optional]
|
| 31 |
-
|
| 32 |
-
<!-- Provide the basic links for the model. -->
|
| 33 |
-
|
| 34 |
-
- **Repository:** [More Information Needed]
|
| 35 |
-
- **Paper [optional]:** [More Information Needed]
|
| 36 |
-
- **Demo [optional]:** [More Information Needed]
|
| 37 |
-
|
| 38 |
-
## Uses
|
| 39 |
-
|
| 40 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 41 |
-
|
| 42 |
-
### Direct Use
|
| 43 |
-
|
| 44 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 45 |
-
|
| 46 |
-
[More Information Needed]
|
| 47 |
-
|
| 48 |
-
### Downstream Use [optional]
|
| 49 |
-
|
| 50 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 51 |
-
|
| 52 |
-
[More Information Needed]
|
| 53 |
-
|
| 54 |
-
### Out-of-Scope Use
|
| 55 |
-
|
| 56 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 57 |
-
|
| 58 |
-
[More Information Needed]
|
| 59 |
-
|
| 60 |
-
## Bias, Risks, and Limitations
|
| 61 |
-
|
| 62 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 63 |
-
|
| 64 |
-
[More Information Needed]
|
| 65 |
-
|
| 66 |
-
### Recommendations
|
| 67 |
-
|
| 68 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 69 |
-
|
| 70 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 71 |
|
| 72 |
## How to Get Started with the Model
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
###
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
## Citation [optional]
|
| 174 |
-
|
| 175 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 176 |
-
|
| 177 |
-
**BibTeX:**
|
| 178 |
-
|
| 179 |
-
[More Information Needed]
|
| 180 |
-
|
| 181 |
-
**APA:**
|
| 182 |
-
|
| 183 |
-
[More Information Needed]
|
| 184 |
-
|
| 185 |
-
## Glossary [optional]
|
| 186 |
-
|
| 187 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 188 |
-
|
| 189 |
-
[More Information Needed]
|
| 190 |
-
|
| 191 |
-
## More Information [optional]
|
| 192 |
-
|
| 193 |
-
[More Information Needed]
|
| 194 |
-
|
| 195 |
-
## Model Card Authors [optional]
|
| 196 |
-
|
| 197 |
-
[More Information Needed]
|
| 198 |
-
|
| 199 |
-
## Model Card Contact
|
| 200 |
-
|
| 201 |
-
[More Information Needed]
|
| 202 |
-
### Framework versions
|
| 203 |
-
|
| 204 |
-
- PEFT 0.15.1
|
|
|
|
| 3 |
library_name: peft
|
| 4 |
datasets:
|
| 5 |
- Moreza009/drug_approval_prediction
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
pipeline_tag: text-classification
|
| 8 |
+
tags:
|
| 9 |
+
- medical
|
| 10 |
+
- biology
|
| 11 |
+
- chemistry
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# DrugReasoner: Interpretable Drug Approval Prediction with a Reasoning-augmented Language Model
|
| 15 |
+
DrugReasoner is an AI-powered system for predicting drug approval outcomes using reasoning-augmented Large Language Models (LLMs) and molecular feature analysis. By combining advanced machine learning with interpretable reasoning, DrugReasoner provides transparent predictions that can accelerate pharmaceutical research and development.
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
## Model Details
|
| 18 |
|
| 19 |
+
- Model Name: DrugReasoner
|
| 20 |
+
- Training Paradigm: Group Relative Policy Optimization (GRPO)
|
| 21 |
+
- Input: SMILES Structure
|
| 22 |
+
- Output: Drug approval prediction + Rational of approval or unapproval + Confidence score
|
| 23 |
+
- Training Libraries: Hugging Face’s transformers, Transformer Reinforcement Learning (TRL), and Parameter-efficient fine-tuning (PEFT)
|
| 24 |
+
- Model Sources: meta-llama/Llama-3.1-8B-Instruct
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
## How to Get Started with the Model
|
| 27 |
+
- To use **DrugReasoner**, you must first request access to the base model [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on Hugging Face by providing your contact information. Once access is granted, you can run DrugReasoner either through the command-line interface (CLI) or integrate it directly into your Python workflows.
|
| 28 |
+
|
| 29 |
+
### Prerequisites
|
| 30 |
+
|
| 31 |
+
- Python 3.8 or higher
|
| 32 |
+
- CUDA-compatible GPU (GPU is required for inference.)
|
| 33 |
+
- Git
|
| 34 |
+
|
| 35 |
+
### Setup Instructions
|
| 36 |
+
|
| 37 |
+
1. **Clone the repository**
|
| 38 |
+
```bash
|
| 39 |
+
git clone [email protected]:mohammad-gh009/DrugReasoner.git
|
| 40 |
+
cd DrugReasoner
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
2. **Create and activate virtual environment**
|
| 44 |
+
|
| 45 |
+
**Windows:**
|
| 46 |
+
```bash
|
| 47 |
+
python -m venv myenv
|
| 48 |
+
myenv\Scripts\activate
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
**Mac/Linux:**
|
| 52 |
+
```bash
|
| 53 |
+
python -m venv myenv
|
| 54 |
+
source myenv/bin/activate
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
3. **Install dependencies**
|
| 58 |
+
```bash
|
| 59 |
+
pip install -r requirements.txt
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
### Batch Inference
|
| 63 |
+
|
| 64 |
+
**Data Requirements:**
|
| 65 |
+
- Place your dataset in the `datasets/` folder
|
| 66 |
+
- Ensure your CSV file contains columns named `SMILES` and `Label`
|
| 67 |
+
- SMILES column should contain molecular structure strings
|
| 68 |
+
- Label column should contain the ground truth labels (if available)
|
| 69 |
+
|
| 70 |
+
```bash
|
| 71 |
+
cd DrugReasoner/src
|
| 72 |
+
python batch_inference.py --input ../datasets/test_processed.csv --output ../outputs/results.csv
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
**Example dataset format:**
|
| 76 |
+
```csv
|
| 77 |
+
SMILES,Label
|
| 78 |
+
"CC(C)CC1=CC=C(C=C1)C(C)C(=O)O",1
|
| 79 |
+
"CC1=CC=C(C=C1)C(=O)O",0
|
| 80 |
+
"CCN(CC)CCCC(C)NC1=C2C=CC(=CC2=NC=C1)CF3",1
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
### Single Molecule Inference
|
| 84 |
+
```bash
|
| 85 |
+
python inference.py \
|
| 86 |
+
--smiles "CC(C)CC1=CC=C(C=C1)C(C)C(=O)O" "CC1=CC=C(C=C1)C(=O)O" \
|
| 87 |
+
--output results.csv \
|
| 88 |
+
--top-k 9 \
|
| 89 |
+
--top-p 0.9 \
|
| 90 |
+
--max-length 2048 \
|
| 91 |
+
--temperature 1.0
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
### Python API Usage
|
| 95 |
+
```python
|
| 96 |
+
from inference import DrugReasoner
|
| 97 |
+
|
| 98 |
+
predictor = DrugReasoner()
|
| 99 |
+
|
| 100 |
+
results = predictor.predict_molecules(
|
| 101 |
+
smiles_list=["CC(C)CC1=CC=C(C=C1)C(C)C(=O)O"],
|
| 102 |
+
save_path="results.csv",
|
| 103 |
+
print_results=True,
|
| 104 |
+
top_k=9,
|
| 105 |
+
top_p=0.9,
|
| 106 |
+
max_length=2048,
|
| 107 |
+
temperature=1.0
|
| 108 |
+
)
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
#### Performance Evaluation
|
| 112 |
+
|
| 113 |
+
Evaluate model performance using a CSV file with `y_pred` and `y_true` columns:
|
| 114 |
+
|
| 115 |
+
```bash
|
| 116 |
+
python utils.py --evaluate "path_to_results.csv"
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
## Citation
|
| 120 |
+
If you use DrugReasoner in your research, please cite our paper:
|
| 121 |
+
```
|
| 122 |
+
Ghaffarzadeh-Esfahani, M., Motahharynia, A*., Yousefian, N., Mazrouei, N., Ghaisari, J., & Gheisari, Y.
|
| 123 |
+
DrugReasoner: Interpretable Drug Approval Prediction with a Reasoning-augmented Language Model.
|
| 124 |
+
arXiv:2508.18579 (2025). https://doi.org/10.48550/arXiv.2508.18579
|
| 125 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|