Text Generation
PEFT
Safetensors
medical
biology
chemistry
conversational
Moreza009 alimotahharynia commited on
Commit
35a97c5
·
verified ·
1 Parent(s): 815e563

Update README.md (#1)

Browse files

- Update README.md (6e6e49ef6a08706f398ec79f1ee8d439d5b2144c)


Co-authored-by: Ali Motahharynia <[email protected]>

Files changed (1) hide show
  1. README.md +113 -192
README.md CHANGED
@@ -3,202 +3,123 @@ base_model: meta-llama/Llama-3.1-8B-Instruct
3
  library_name: peft
4
  datasets:
5
  - Moreza009/drug_approval_prediction
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for Model ID
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
-
13
 
14
  ## Model Details
15
 
16
- ### Model Description
17
-
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
-
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
- ### Direct Use
43
-
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
-
46
- [More Information Needed]
47
-
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
-
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
 
72
  ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
-
80
- ### Training Data
81
-
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- ## Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Contact
200
-
201
- [More Information Needed]
202
- ### Framework versions
203
-
204
- - PEFT 0.15.1
 
3
  library_name: peft
4
  datasets:
5
  - Moreza009/drug_approval_prediction
6
+ license: apache-2.0
7
+ pipeline_tag: text-classification
8
+ tags:
9
+ - medical
10
+ - biology
11
+ - chemistry
12
  ---
13
 
14
+ # DrugReasoner: Interpretable Drug Approval Prediction with a Reasoning-augmented Language Model
15
+ DrugReasoner is an AI-powered system for predicting drug approval outcomes using reasoning-augmented Large Language Models (LLMs) and molecular feature analysis. By combining advanced machine learning with interpretable reasoning, DrugReasoner provides transparent predictions that can accelerate pharmaceutical research and development.
 
 
 
16
 
17
  ## Model Details
18
 
19
+ - Model Name: DrugReasoner
20
+ - Training Paradigm: Group Relative Policy Optimization (GRPO)
21
+ - Input: SMILES Structure
22
+ - Output: Drug approval prediction + Rational of approval or unapproval + Confidence score
23
+ - Training Libraries: Hugging Face’s transformers, Transformer Reinforcement Learning (TRL), and Parameter-efficient fine-tuning (PEFT)
24
+ - Model Sources: meta-llama/Llama-3.1-8B-Instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## How to Get Started with the Model
27
+ - To use **DrugReasoner**, you must first request access to the base model [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on Hugging Face by providing your contact information. Once access is granted, you can run DrugReasoner either through the command-line interface (CLI) or integrate it directly into your Python workflows.
28
+
29
+ ### Prerequisites
30
+
31
+ - Python 3.8 or higher
32
+ - CUDA-compatible GPU (GPU is required for inference.)
33
+ - Git
34
+
35
+ ### Setup Instructions
36
+
37
+ 1. **Clone the repository**
38
+ ```bash
39
+ git clone [email protected]:mohammad-gh009/DrugReasoner.git
40
+ cd DrugReasoner
41
+ ```
42
+
43
+ 2. **Create and activate virtual environment**
44
+
45
+ **Windows:**
46
+ ```bash
47
+ python -m venv myenv
48
+ myenv\Scripts\activate
49
+ ```
50
+
51
+ **Mac/Linux:**
52
+ ```bash
53
+ python -m venv myenv
54
+ source myenv/bin/activate
55
+ ```
56
+
57
+ 3. **Install dependencies**
58
+ ```bash
59
+ pip install -r requirements.txt
60
+ ```
61
+
62
+ ### Batch Inference
63
+
64
+ **Data Requirements:**
65
+ - Place your dataset in the `datasets/` folder
66
+ - Ensure your CSV file contains columns named `SMILES` and `Label`
67
+ - SMILES column should contain molecular structure strings
68
+ - Label column should contain the ground truth labels (if available)
69
+
70
+ ```bash
71
+ cd DrugReasoner/src
72
+ python batch_inference.py --input ../datasets/test_processed.csv --output ../outputs/results.csv
73
+ ```
74
+
75
+ **Example dataset format:**
76
+ ```csv
77
+ SMILES,Label
78
+ "CC(C)CC1=CC=C(C=C1)C(C)C(=O)O",1
79
+ "CC1=CC=C(C=C1)C(=O)O",0
80
+ "CCN(CC)CCCC(C)NC1=C2C=CC(=CC2=NC=C1)CF3",1
81
+ ```
82
+
83
+ ### Single Molecule Inference
84
+ ```bash
85
+ python inference.py \
86
+ --smiles "CC(C)CC1=CC=C(C=C1)C(C)C(=O)O" "CC1=CC=C(C=C1)C(=O)O" \
87
+ --output results.csv \
88
+ --top-k 9 \
89
+ --top-p 0.9 \
90
+ --max-length 2048 \
91
+ --temperature 1.0
92
+ ```
93
+
94
+ ### Python API Usage
95
+ ```python
96
+ from inference import DrugReasoner
97
+
98
+ predictor = DrugReasoner()
99
+
100
+ results = predictor.predict_molecules(
101
+ smiles_list=["CC(C)CC1=CC=C(C=C1)C(C)C(=O)O"],
102
+ save_path="results.csv",
103
+ print_results=True,
104
+ top_k=9,
105
+ top_p=0.9,
106
+ max_length=2048,
107
+ temperature=1.0
108
+ )
109
+ ```
110
+
111
+ #### Performance Evaluation
112
+
113
+ Evaluate model performance using a CSV file with `y_pred` and `y_true` columns:
114
+
115
+ ```bash
116
+ python utils.py --evaluate "path_to_results.csv"
117
+ ```
118
+
119
+ ## Citation
120
+ If you use DrugReasoner in your research, please cite our paper:
121
+ ```
122
+ Ghaffarzadeh-Esfahani, M., Motahharynia, A*., Yousefian, N., Mazrouei, N., Ghaisari, J., & Gheisari, Y.
123
+ DrugReasoner: Interpretable Drug Approval Prediction with a Reasoning-augmented Language Model.
124
+ arXiv:2508.18579 (2025). https://doi.org/10.48550/arXiv.2508.18579
125
+ ```