# config.yaml seed: 2102 device: cuda train_batch_size: 256 learning_rate: 0.001 num_epochs: 60 scheduler_patience: 5 scheduler_factor: 0.2 train_split: 0.9 dataset_path: 'data/prottrans_molformer_tensor_dataset100k.json' model_train_save_path: 'data/BAPULM_weights.pth' model_inference_path: 'data/BAPULM_results_molformer_reproduce_json.pth' inference_batch_size: 64 benchmark_files: - 'data/benchmark1k2101.csv' - 'data/Test2016_290.csv' - 'data/CSAR-HiQ_36.csv'