import math import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoTokenizer, Trainer, TrainingArguments, PreTrainedModel, PretrainedConfig from datasets import load_dataset, IterableDataset # Configuration class ModelConfig(PretrainedConfig): model_type = "custom_henyo_culturax" def __init__( self, vocab_size=50257, dim=768, n_layers=12, n_heads=12, n_kv_heads=4, multiple_of=256, max_seq_len=1024, dropout=0.05, **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.dim = dim self.n_layers = n_layers self.n_heads = n_heads self.n_kv_heads = n_kv_heads self.multiple_of = multiple_of self.max_seq_len = max_seq_len self.dropout = dropout self.head_dim = dim // n_heads # Architecture Components class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): return self._norm(x.float()).type_as(x) * self.weight def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device) freqs = torch.outer(t, freqs).float() return torch.polar(torch.ones_like(freqs), freqs) def apply_rotary_emb(xq, xk, freqs_cis): xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) freqs_cis = freqs_cis.unsqueeze(0).unsqueeze(0) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) class GroupedQueryAttention(nn.Module): def __init__(self, args: ModelConfig): super().__init__() self.n_heads = args.n_heads self.n_kv_heads = args.n_kv_heads self.head_dim = args.head_dim self.n_rep = self.n_heads // args.n_kv_heads self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False) self.wk = nn.Linear(args.dim, args.n_kv_heads * self.head_dim, bias=False) self.wv = nn.Linear(args.dim, args.n_kv_heads * self.head_dim, bias=False) self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False) self.dropout = nn.Dropout(args.dropout) def forward(self, x, freqs_cis, mask=None): b, s, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq = xq.view(b, s, self.n_heads, self.head_dim).transpose(1, 2) xk = xk.view(b, s, self.n_kv_heads, self.head_dim).transpose(1, 2) xv = xv.view(b, s, self.n_kv_heads, self.head_dim).transpose(1, 2) xq, xk = apply_rotary_emb(xq, xk, freqs_cis) if self.n_rep > 1: xk = xk.repeat_interleave(self.n_rep, dim=1) xv = xv.repeat_interleave(self.n_rep, dim=1) output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=mask, dropout_p=self.dropout.p if self.training else 0.0, is_causal=True) return self.wo(output.transpose(1, 2).contiguous().view(b, s, -1)) class SwiGLU(nn.Module): def __init__(self, args: ModelConfig): super().__init__() hidden_dim = 4 * args.dim hidden_dim = int(2 * hidden_dim / 3) hidden_dim = args.multiple_of * ((hidden_dim + args.multiple_of - 1) // args.multiple_of) self.w1 = nn.Linear(args.dim, hidden_dim, bias=False) self.w2 = nn.Linear(hidden_dim, args.dim, bias=False) self.w3 = nn.Linear(args.dim, hidden_dim, bias=False) def forward(self, x): return self.w2(F.silu(self.w1(x)) * self.w3(x)) class TransformerBlock(nn.Module): def __init__(self, args: ModelConfig): super().__init__() self.attention_norm = RMSNorm(args.dim) self.attention = GroupedQueryAttention(args) self.ffn_norm = RMSNorm(args.dim) self.feed_forward = SwiGLU(args) def forward(self, x, freqs_cis, mask=None): x = x + self.attention(self.attention_norm(x), freqs_cis, mask) x = x + self.feed_forward(self.ffn_norm(x)) return x class HenyoModel(PreTrainedModel): config_class = ModelConfig def __init__(self, config): super().__init__(config) self.config = config self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) self.layers = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)]) self.norm = RMSNorm(config.dim) self.output = nn.Linear(config.dim, config.vocab_size, bias=False) self.output.weight = self.tok_embeddings.weight self.freqs_cis = precompute_freqs_cis(config.dim // config.n_heads, config.max_seq_len * 2) def forward(self, input_ids, labels=None, **kwargs): b, s = input_ids.shape h = self.tok_embeddings(input_ids) freqs_cis = self.freqs_cis[:s].to(h.device) mask = None if not hasattr(F, 'scaled_dot_product_attention'): mask = torch.triu(torch.full((s, s), float("-inf"), device=h.device), diagonal=1) for layer in self.layers: h = layer(h, freqs_cis, mask) h = self.norm(h) logits = self.output(h) loss = None if labels is not None: shift_logits = logits[..., :-1, :].contiguous().view(-1, self.config.vocab_size) shift_labels = labels[..., 1:].contiguous().view(-1) loss = F.cross_entropy(shift_logits, shift_labels) return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}