| from transformers.utils import logging | |
| from transformers.models.llama import LlamaConfig | |
| logger = logging.get_logger(__name__) | |
| class SLModelConfig(LlamaConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`SLModelModel`]. It is used to instantiate an SLModel | |
| model according to the specified arguments, defining the model architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 128256): | |
| Vocabulary size of the SLModel model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`SLModel`] | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| intermediate_size (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| num_key_value_heads (`int`, *optional*): | |
| This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
| `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
| `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
| converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
| by meanpooling all the original heads within that group. For more details checkout [this | |
| paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
| `num_attention_heads`. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. | |
| max_position_embeddings (`int`, *optional*, defaults to 8192): | |
| The maximum sequence length that this model might ever be used with. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| rms_norm_eps (`float`, *optional*, defaults to 1e-05): | |
| The epsilon used by the rms normalization layers. | |
| bos_token_id (`int`, *optional*, defaults to 128000): | |
| Beginning of stream token id. | |
| eos_token_id (`int`, *optional*, defaults to 128001): | |
| End of stream token id. | |
| pad_token_id (`int`, *optional*, defaults to 128001): | |
| Padding token id. | |
| mask_token_id (`int`, *optional*, defaults to 128002): | |
| Mask token id. | |
| pretraining_tp (`int`, *optional*, defaults to 1): | |
| Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | |
| document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to | |
| understand more about it. This value is necessary to ensure exact reproducibility of the pretraining | |
| results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). | |
| tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
| Whether to tie weight embeddings | |
| rope_theta (`float`, *optional*, defaults to 250000.0): | |
| The base period of the RoPE embeddings. | |
| rope_scaling (`Dict`, *optional*): | |
| Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | |
| and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | |
| accordingly. | |
| Expected contents: | |
| `rope_type` (`str`): | |
| The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope'], | |
| with 'default' being the original RoPE implementation. | |
| `factor` (`float`, *optional*): | |
| Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | |
| most scaling types, a `factor` of x will enable the model to handle sequences of length x * | |
| original maximum pre-trained length. | |
| `original_max_position_embeddings` (`int`, *optional*): | |
| Used with 'dynamic', 'longrope'. The original max position embeddings used during | |
| pretraining. | |
| `attention_factor` (`float`, *optional*): | |
| Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | |
| computation. If unspecified, it defaults to value recommended by the implementation, using the | |
| `factor` field to infer the suggested value. | |
| `beta_fast` (`float`, *optional*): | |
| Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | |
| ramp function. If unspecified, it defaults to 32. | |
| `beta_slow` (`float`, *optional*): | |
| Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | |
| ramp function. If unspecified, it defaults to 1. | |
| `short_factor` (`List[float]`, *optional*): | |
| Only used with 'longrope'. The scaling factor to be applied to short contexts (< | |
| `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | |
| size divided by the number of attention heads divided by 2 | |
| `long_factor` (`List[float]`, *optional*): | |
| Only used with 'longrope'. The scaling factor to be applied to long contexts (< | |
| `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | |
| size divided by the number of attention heads divided by 2 | |
| attention_bias (`bool`, *optional*, defaults to `False`): | |
| Whether to use a bias in the query, key, value and output projection layers during self-attention. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| mlp_bias (`bool`, *optional*, defaults to `False`): | |
| Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. | |
| head_dim (`int`, *optional*): | |
| The attention head dimension. If None, it will default to hidden_size // num_attention_heads | |
| classifier_pooling (`str`, *optional*, defaults to `"late"`): | |
| The pooling strategy to use for the classifier. Can be one of ['mean', 'eos']. | |
| retrieval_pooling (`str`, *optional*, defaults to `"late"`): | |
| The pooling strategy to use for the retriever. Can be one of ['mean', 'eos']. | |
| """ | |
| model_type = "sl_model" | |
| def __init__( | |
| self, | |
| vocab_size=128256, | |
| hidden_size=768, | |
| intermediate_size=3072, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| num_key_value_heads=None, | |
| hidden_act="silu", | |
| max_position_embeddings=8192, | |
| initializer_range=0.02, | |
| rms_norm_eps=1e-05, | |
| bos_token_id=128000, | |
| eos_token_id=128001, | |
| pad_token_id=128001, | |
| mask_token_id=128002, | |
| pretraining_tp=1, | |
| tie_word_embeddings=False, | |
| rope_theta=250000.0, | |
| rope_scaling=None, | |
| attention_bias=False, | |
| attention_dropout=0.0, | |
| mlp_bias=False, | |
| head_dim=None, | |
| classifier_pooling="mean", | |
| retrieval_pooling="mean", | |
| is_causal=False, | |
| **kwargs, | |
| ): | |
| if num_key_value_heads is None: | |
| num_key_value_heads = num_attention_heads | |
| if "use_cache" in kwargs: | |
| kwargs.pop("use_cache", None) | |
| super().__init__( | |
| vocab_size=vocab_size, | |
| hidden_size=hidden_size, | |
| intermediate_size=intermediate_size, | |
| num_hidden_layers=num_hidden_layers, | |
| num_attention_heads=num_attention_heads, | |
| num_key_value_heads=num_key_value_heads, | |
| hidden_act=hidden_act, | |
| max_position_embeddings=max_position_embeddings, | |
| initializer_range=initializer_range, | |
| rms_norm_eps=rms_norm_eps, | |
| use_cache=False, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| pad_token_id=pad_token_id, | |
| pretraining_tp=pretraining_tp, | |
| tie_word_embeddings=tie_word_embeddings, | |
| rope_theta=rope_theta, | |
| rope_scaling=rope_scaling, | |
| attention_bias=attention_bias, | |
| attention_dropout=attention_dropout, | |
| mlp_bias=mlp_bias, | |
| head_dim=head_dim, | |
| **kwargs, | |
| ) | |
| self.mask_token_id = mask_token_id | |
| self.classifier_pooling = classifier_pooling | |
| self.retrieval_pooling = retrieval_pooling | |
| self.is_causal = is_causal | |
| __all__ = ["SLModelConfig"] | |