Upload modeling files
Browse files- configuration_sl_model.py +177 -0
configuration_sl_model.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.utils import logging
|
| 2 |
+
from transformers.models.llama import LlamaConfig
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
logger = logging.get_logger(__name__)
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class SLModelConfig(LlamaConfig):
|
| 9 |
+
r"""
|
| 10 |
+
This is the configuration class to store the configuration of a [`SLModelModel`]. It is used to instantiate an SLModel
|
| 11 |
+
model according to the specified arguments, defining the model architecture.
|
| 12 |
+
|
| 13 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 14 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
vocab_size (`int`, *optional*, defaults to 128256):
|
| 19 |
+
Vocabulary size of the SLModel model. Defines the number of different tokens that can be represented by the
|
| 20 |
+
`inputs_ids` passed when calling [`SLModel`]
|
| 21 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 22 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 23 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 24 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
| 25 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 26 |
+
Number of hidden layers in the Transformer encoder.
|
| 27 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 28 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 29 |
+
num_key_value_heads (`int`, *optional*):
|
| 30 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 31 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 32 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 33 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 34 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 35 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 36 |
+
`num_attention_heads`.
|
| 37 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 38 |
+
The non-linear activation function (function or string) in the encoder and pooler.
|
| 39 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
| 40 |
+
The maximum sequence length that this model might ever be used with.
|
| 41 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 42 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 43 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 44 |
+
The epsilon used by the rms normalization layers.
|
| 45 |
+
bos_token_id (`int`, *optional*, defaults to 128000):
|
| 46 |
+
Beginning of stream token id.
|
| 47 |
+
eos_token_id (`int`, *optional*, defaults to 128001):
|
| 48 |
+
End of stream token id.
|
| 49 |
+
pad_token_id (`int`, *optional*, defaults to 128001):
|
| 50 |
+
Padding token id.
|
| 51 |
+
mask_token_id (`int`, *optional*, defaults to 128002):
|
| 52 |
+
Mask token id.
|
| 53 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 54 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 55 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
| 56 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
| 57 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 58 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 59 |
+
Whether to tie weight embeddings
|
| 60 |
+
rope_theta (`float`, *optional*, defaults to 250000.0):
|
| 61 |
+
The base period of the RoPE embeddings.
|
| 62 |
+
rope_scaling (`Dict`, *optional*):
|
| 63 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 64 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 65 |
+
accordingly.
|
| 66 |
+
Expected contents:
|
| 67 |
+
`rope_type` (`str`):
|
| 68 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope'],
|
| 69 |
+
with 'default' being the original RoPE implementation.
|
| 70 |
+
`factor` (`float`, *optional*):
|
| 71 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 72 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 73 |
+
original maximum pre-trained length.
|
| 74 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 75 |
+
Used with 'dynamic', 'longrope'. The original max position embeddings used during
|
| 76 |
+
pretraining.
|
| 77 |
+
`attention_factor` (`float`, *optional*):
|
| 78 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 79 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 80 |
+
`factor` field to infer the suggested value.
|
| 81 |
+
`beta_fast` (`float`, *optional*):
|
| 82 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 83 |
+
ramp function. If unspecified, it defaults to 32.
|
| 84 |
+
`beta_slow` (`float`, *optional*):
|
| 85 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 86 |
+
ramp function. If unspecified, it defaults to 1.
|
| 87 |
+
`short_factor` (`List[float]`, *optional*):
|
| 88 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 89 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 90 |
+
size divided by the number of attention heads divided by 2
|
| 91 |
+
`long_factor` (`List[float]`, *optional*):
|
| 92 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 93 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 94 |
+
size divided by the number of attention heads divided by 2
|
| 95 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
| 96 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 97 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 98 |
+
The dropout ratio for the attention probabilities.
|
| 99 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
| 100 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
| 101 |
+
head_dim (`int`, *optional*):
|
| 102 |
+
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
|
| 103 |
+
classifier_pooling (`str`, *optional*, defaults to `"late"`):
|
| 104 |
+
The pooling strategy to use for the classifier. Can be one of ['mean', 'eos'].
|
| 105 |
+
retrieval_pooling (`str`, *optional*, defaults to `"late"`):
|
| 106 |
+
The pooling strategy to use for the retriever. Can be one of ['mean', 'eos'].
|
| 107 |
+
"""
|
| 108 |
+
|
| 109 |
+
model_type = "sl_model"
|
| 110 |
+
|
| 111 |
+
def __init__(
|
| 112 |
+
self,
|
| 113 |
+
vocab_size=128256,
|
| 114 |
+
hidden_size=768,
|
| 115 |
+
intermediate_size=3072,
|
| 116 |
+
num_hidden_layers=12,
|
| 117 |
+
num_attention_heads=12,
|
| 118 |
+
num_key_value_heads=None,
|
| 119 |
+
hidden_act="silu",
|
| 120 |
+
max_position_embeddings=8192,
|
| 121 |
+
initializer_range=0.02,
|
| 122 |
+
rms_norm_eps=1e-05,
|
| 123 |
+
bos_token_id=128000,
|
| 124 |
+
eos_token_id=128001,
|
| 125 |
+
pad_token_id=128001,
|
| 126 |
+
mask_token_id=128002,
|
| 127 |
+
pretraining_tp=1,
|
| 128 |
+
tie_word_embeddings=False,
|
| 129 |
+
rope_theta=250000.0,
|
| 130 |
+
rope_scaling=None,
|
| 131 |
+
attention_bias=False,
|
| 132 |
+
attention_dropout=0.0,
|
| 133 |
+
mlp_bias=False,
|
| 134 |
+
head_dim=None,
|
| 135 |
+
classifier_pooling="mean",
|
| 136 |
+
retrieval_pooling="mean",
|
| 137 |
+
is_causal=False,
|
| 138 |
+
**kwargs,
|
| 139 |
+
):
|
| 140 |
+
if num_key_value_heads is None:
|
| 141 |
+
num_key_value_heads = num_attention_heads
|
| 142 |
+
|
| 143 |
+
if "use_cache" in kwargs:
|
| 144 |
+
kwargs.pop("use_cache", None)
|
| 145 |
+
|
| 146 |
+
super().__init__(
|
| 147 |
+
vocab_size=vocab_size,
|
| 148 |
+
hidden_size=hidden_size,
|
| 149 |
+
intermediate_size=intermediate_size,
|
| 150 |
+
num_hidden_layers=num_hidden_layers,
|
| 151 |
+
num_attention_heads=num_attention_heads,
|
| 152 |
+
num_key_value_heads=num_key_value_heads,
|
| 153 |
+
hidden_act=hidden_act,
|
| 154 |
+
max_position_embeddings=max_position_embeddings,
|
| 155 |
+
initializer_range=initializer_range,
|
| 156 |
+
rms_norm_eps=rms_norm_eps,
|
| 157 |
+
use_cache=False,
|
| 158 |
+
bos_token_id=bos_token_id,
|
| 159 |
+
eos_token_id=eos_token_id,
|
| 160 |
+
pad_token_id=pad_token_id,
|
| 161 |
+
pretraining_tp=pretraining_tp,
|
| 162 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 163 |
+
rope_theta=rope_theta,
|
| 164 |
+
rope_scaling=rope_scaling,
|
| 165 |
+
attention_bias=attention_bias,
|
| 166 |
+
attention_dropout=attention_dropout,
|
| 167 |
+
mlp_bias=mlp_bias,
|
| 168 |
+
head_dim=head_dim,
|
| 169 |
+
**kwargs,
|
| 170 |
+
)
|
| 171 |
+
self.mask_token_id = mask_token_id
|
| 172 |
+
self.classifier_pooling = classifier_pooling
|
| 173 |
+
self.retrieval_pooling = retrieval_pooling
|
| 174 |
+
self.is_causal = is_causal
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
__all__ = ["SLModelConfig"]
|