--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:8283932 - loss:MSELoss base_model: sentence-transformers/all-MiniLM-L6-v2 widget: - source_sentence: Through the Southern Gas Corridor pipeline, gas supply to the European Union increased from 8.1 billion cubic meters in 2021 to 11.4 billion cubic meters in 2022. sentences: - After this meeting, the monthly amount collected from prosecutors and investigators for the building was increased from 460 manats to 480 manats. - Məlik-Aslanov 1919-cu il fevralın 18-dək həm də müvəqqəti olaraq ticarət, sənaye və ərzaq nazirinin səlahiyyətlərini də yerinə yetirmişdi. - Üçüncü mərhələdə isə Şura hər bir layihə üzrə təqdim olunmuş ekspert rəyini, QHT-nin Şuranın maliyyə dəstəyi hesabına əvvəlki illərdə həyata keçirdiyi layihənin icra vəziyyətini və layihə idarəetmə təcrübəsini nəzərə alaraq yekun qərar qəbul edir. - source_sentence: '“Azərbaycan Uşaqlar Birliyi”nin sədri Kəmalə Ağazadə isə məsələnin Elinanın deyil, digər şəxslərin üzərində fokuslanmasının doğru olmadığını bildirdi: “Elinanın intiharı ilə bağlı məsələ bu gün də sosial şəbəkələrdə xeyli müzakirə edilir, müxtəlif fikirlər bildirilir.' sentences: - 1952-ci ilin aprelindən başlayaraq, "Azərbaycan Kültür Dərnəyi" tərəfindən Ankarada aylıq "Azərbaycan" jurnalı nəşr olunur. - G. Məmmədovanın fikrincə abidənin konstruktiv həllinin analizi, kvadrat təməldən dairəvi dacili və səkkizbucaqlı xarici barabana keçidin yelkənlərlə təmin edilməsinə əsasən kilsəni təxminən VII-VIII əsrlərə aid etmək mümkündür. - However, a signature campaign was conducted in the country to hold a referendum on extending Nursultan Nazarbayev’s term, and nearly 5 million signatures were collected. - source_sentence: Thus, we preserve our history, traditions, and culture, and we do a lot to support each other. sentences: - Belə ki, ara yoldan Bakıxanov küçəsinə çıxan “Mercedes”in sürücü Özal Quliyevin üstünlük nişanının tələbinə əməl etməməsi qəza ilə nəticələnib. - Bundan başqa, onun sözlərinə görə, OPEK+ razılaşması neft bazarının məhsul artıqlığından qurtulmasına kömək edib. - Onun fikrincə, İranın Azərbaycan vilayətləri də “Cənubi Azərbaycan” olmalıdır. - source_sentence: It's true that, although Shahriyar, who is in the top four alongside Aronyan in the rankings, couldn't win this match. sentences: - After spending a year in exile, his father Sultan Abdul Hamid sent him to Istanbul along with his sisters Ayşe Sultan and Şadiye Sultan, and asked his brother Sultan Reşad to arrange their marriages. - Bu, ilk dəfədir ki ABŞ hərbi qüvvələri Rusiyanın keçən ay gizli olaraq raketlər yerləşdirilməsini ictimai şəkildə təsdiq edir. - He noted that the Supreme Court held seven sessions, thoroughly reviewed the lower court’s investigation, and upheld the death sentence. - source_sentence: At the same time, it is no secret that Washington’s strategic plans for the Middle East include changing the current Iranian regime, which opposes Western interests in the region. sentences: - Sürücü Ə.Nəzərovla maşındakı digər sərnişinlər Rahim Mahmudov və Anar Bayramov isə müxtəlif dərəcəli bədən xəsarətləri ilə Lənkəran Mərkəzi Rayon Xəstəxanasına yerləşdirilib. - In addition, Turkey was demanding the territory that included the districts of Akhaltsikhe, Akhalkalaki, Alexandropol (Gyumri), Surmali, and Nakhchivan. - Bu vəziyyət kilsə meydanını düzəltdiyindən və qolları bərabər uzunluqda olan xaç planı aydınlaşmadığı üçün bu plan növü qapalı yunan xaçı planı adlandırılır. pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'At the same time, it is no secret that Washington’s strategic plans for the Middle East include changing the current Iranian regime, which opposes Western interests in the region.', 'In addition, Turkey was demanding the territory that included the districts of Akhaltsikhe, Akhalkalaki, Alexandropol (Gyumri), Surmali, and Nakhchivan.', 'Sürücü Ə.Nəzərovla maşındakı digər sərnişinlər Rahim Mahmudov və Anar Bayramov isə müxtəlif dərəcəli bədən xəsarətləri ilə Lənkəran Mərkəzi Rayon Xəstəxanasına yerləşdirilib.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 8,283,932 training samples * Columns: sentence_0 and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | label | |:--------|:---------------------------------------------------------------------------------|:-------------------------------------| | type | string | list | | details | | | * Samples: | sentence_0 | label | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------| | “Biz “Hizbullah”a axan maliyyə dəstəyini dayandırmaq istəyirik və bu məqsədlə ABŞ hökuməti tutarlı məlumat qarşılığında 10 milyon dollaradək mükafat verməklə yanaşı digər tədbirlər də görəcək”, - Evanoff belə deyib. | [-0.022054675966501236, 0.0932646170258522, -0.01854480803012848, -0.025271562859416008, 0.028432276099920273, ...] | | Bu dövləti bu gün müxalifətdə olanlar quranda Əli Həsənovun harada nə işlə məşğul olduğu bəlli deyildi. | [-0.012831359170377254, 0.022371841594576836, -0.0271938294172287, 0.09667906910181046, 0.009270057082176208, ...] | | APA-nın “Hürriyet” qəzetinə istinadən verdiyi məlumata görə, ABŞ Hərbi Hava Qüvvələrinn Komandanlığı ən son 1991-ci ildə Körfəz savaşında istifadə edilmiş B-52 təyyarələrinin Qətərə göndərildiyini açıqlayıb. | [-0.01321476697921753, 0.06281372904777527, 0.005026344675570726, -0.004140781704336405, 0.04239720478653908, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:------:|:------:|:-------------:| | 0.0039 | 500 | 0.0035 | | 0.0077 | 1000 | 0.0024 | | 0.0116 | 1500 | 0.0022 | | 0.0155 | 2000 | 0.002 | | 0.0193 | 2500 | 0.0019 | | 0.0232 | 3000 | 0.0019 | | 0.0270 | 3500 | 0.0018 | | 0.0309 | 4000 | 0.0018 | | 0.0348 | 4500 | 0.0017 | | 0.0386 | 5000 | 0.0017 | | 0.0425 | 5500 | 0.0016 | | 0.0464 | 6000 | 0.0016 | | 0.0502 | 6500 | 0.0016 | | 0.0541 | 7000 | 0.0016 | | 0.0579 | 7500 | 0.0015 | | 0.0618 | 8000 | 0.0015 | | 0.0657 | 8500 | 0.0015 | | 0.0695 | 9000 | 0.0014 | | 0.0734 | 9500 | 0.0014 | | 0.0773 | 10000 | 0.0014 | | 0.0811 | 10500 | 0.0013 | | 0.0850 | 11000 | 0.0013 | | 0.0888 | 11500 | 0.0013 | | 0.0927 | 12000 | 0.0012 | | 0.0966 | 12500 | 0.0012 | | 0.1004 | 13000 | 0.0012 | | 0.1043 | 13500 | 0.0012 | | 0.1082 | 14000 | 0.0011 | | 0.1120 | 14500 | 0.0011 | | 0.1159 | 15000 | 0.0011 | | 0.1197 | 15500 | 0.0011 | | 0.1236 | 16000 | 0.0011 | | 0.1275 | 16500 | 0.001 | | 0.1313 | 17000 | 0.001 | | 0.1352 | 17500 | 0.001 | | 0.1391 | 18000 | 0.001 | | 0.1429 | 18500 | 0.001 | | 0.1468 | 19000 | 0.0009 | | 0.1507 | 19500 | 0.0009 | | 0.1545 | 20000 | 0.0009 | | 0.1584 | 20500 | 0.0009 | | 0.1622 | 21000 | 0.0009 | | 0.1661 | 21500 | 0.0008 | | 0.1700 | 22000 | 0.0008 | | 0.1738 | 22500 | 0.0008 | | 0.1777 | 23000 | 0.0008 | | 0.1816 | 23500 | 0.0008 | | 0.1854 | 24000 | 0.0008 | | 0.1893 | 24500 | 0.0008 | | 0.1931 | 25000 | 0.0008 | | 0.1970 | 25500 | 0.0007 | | 0.2009 | 26000 | 0.0007 | | 0.2047 | 26500 | 0.0007 | | 0.2086 | 27000 | 0.0007 | | 0.2125 | 27500 | 0.0007 | | 0.2163 | 28000 | 0.0007 | | 0.2202 | 28500 | 0.0007 | | 0.2240 | 29000 | 0.0007 | | 0.2279 | 29500 | 0.0007 | | 0.2318 | 30000 | 0.0007 | | 0.2356 | 30500 | 0.0007 | | 0.2395 | 31000 | 0.0007 | | 0.2434 | 31500 | 0.0006 | | 0.2472 | 32000 | 0.0006 | | 0.2511 | 32500 | 0.0006 | | 0.2550 | 33000 | 0.0006 | | 0.2588 | 33500 | 0.0006 | | 0.2627 | 34000 | 0.0006 | | 0.2665 | 34500 | 0.0006 | | 0.2704 | 35000 | 0.0006 | | 0.2743 | 35500 | 0.0006 | | 0.2781 | 36000 | 0.0006 | | 0.2820 | 36500 | 0.0006 | | 0.2859 | 37000 | 0.0006 | | 0.2897 | 37500 | 0.0006 | | 0.2936 | 38000 | 0.0006 | | 0.2974 | 38500 | 0.0006 | | 0.3013 | 39000 | 0.0006 | | 0.3052 | 39500 | 0.0006 | | 0.3090 | 40000 | 0.0006 | | 0.3129 | 40500 | 0.0006 | | 0.3168 | 41000 | 0.0006 | | 0.3206 | 41500 | 0.0005 | | 0.3245 | 42000 | 0.0005 | | 0.3283 | 42500 | 0.0005 | | 0.3322 | 43000 | 0.0005 | | 0.3361 | 43500 | 0.0005 | | 0.3399 | 44000 | 0.0005 | | 0.3438 | 44500 | 0.0005 | | 0.3477 | 45000 | 0.0005 | | 0.3515 | 45500 | 0.0005 | | 0.3554 | 46000 | 0.0005 | | 0.3592 | 46500 | 0.0005 | | 0.3631 | 47000 | 0.0005 | | 0.3670 | 47500 | 0.0005 | | 0.3708 | 48000 | 0.0005 | | 0.3747 | 48500 | 0.0005 | | 0.3786 | 49000 | 0.0005 | | 0.3824 | 49500 | 0.0005 | | 0.3863 | 50000 | 0.0005 | | 0.3902 | 50500 | 0.0005 | | 0.3940 | 51000 | 0.0005 | | 0.3979 | 51500 | 0.0005 | | 0.4017 | 52000 | 0.0005 | | 0.4056 | 52500 | 0.0005 | | 0.4095 | 53000 | 0.0005 | | 0.4133 | 53500 | 0.0005 | | 0.4172 | 54000 | 0.0005 | | 0.4211 | 54500 | 0.0005 | | 0.4249 | 55000 | 0.0005 | | 0.4288 | 55500 | 0.0005 | | 0.4326 | 56000 | 0.0005 | | 0.4365 | 56500 | 0.0005 | | 0.4404 | 57000 | 0.0005 | | 0.4442 | 57500 | 0.0005 | | 0.4481 | 58000 | 0.0005 | | 0.4520 | 58500 | 0.0005 | | 0.4558 | 59000 | 0.0005 | | 0.4597 | 59500 | 0.0005 | | 0.4635 | 60000 | 0.0005 | | 0.4674 | 60500 | 0.0005 | | 0.4713 | 61000 | 0.0005 | | 0.4751 | 61500 | 0.0005 | | 0.4790 | 62000 | 0.0005 | | 0.4829 | 62500 | 0.0005 | | 0.4867 | 63000 | 0.0005 | | 0.4906 | 63500 | 0.0005 | | 0.4944 | 64000 | 0.0005 | | 0.4983 | 64500 | 0.0005 | | 0.5022 | 65000 | 0.0005 | | 0.5060 | 65500 | 0.0004 | | 0.5099 | 66000 | 0.0004 | | 0.5138 | 66500 | 0.0004 | | 0.5176 | 67000 | 0.0004 | | 0.5215 | 67500 | 0.0004 | | 0.5254 | 68000 | 0.0004 | | 0.5292 | 68500 | 0.0004 | | 0.5331 | 69000 | 0.0004 | | 0.5369 | 69500 | 0.0004 | | 0.5408 | 70000 | 0.0004 | | 0.5447 | 70500 | 0.0004 | | 0.5485 | 71000 | 0.0004 | | 0.5524 | 71500 | 0.0004 | | 0.5563 | 72000 | 0.0004 | | 0.5601 | 72500 | 0.0004 | | 0.5640 | 73000 | 0.0004 | | 0.5678 | 73500 | 0.0004 | | 0.5717 | 74000 | 0.0004 | | 0.5756 | 74500 | 0.0004 | | 0.5794 | 75000 | 0.0004 | | 0.5833 | 75500 | 0.0004 | | 0.5872 | 76000 | 0.0004 | | 0.5910 | 76500 | 0.0004 | | 0.5949 | 77000 | 0.0004 | | 0.5987 | 77500 | 0.0004 | | 0.6026 | 78000 | 0.0004 | | 0.6065 | 78500 | 0.0004 | | 0.6103 | 79000 | 0.0004 | | 0.6142 | 79500 | 0.0004 | | 0.6181 | 80000 | 0.0004 | | 0.6219 | 80500 | 0.0004 | | 0.6258 | 81000 | 0.0004 | | 0.6296 | 81500 | 0.0004 | | 0.6335 | 82000 | 0.0004 | | 0.6374 | 82500 | 0.0004 | | 0.6412 | 83000 | 0.0004 | | 0.6451 | 83500 | 0.0004 | | 0.6490 | 84000 | 0.0004 | | 0.6528 | 84500 | 0.0004 | | 0.6567 | 85000 | 0.0004 | | 0.6606 | 85500 | 0.0004 | | 0.6644 | 86000 | 0.0004 | | 0.6683 | 86500 | 0.0004 | | 0.6721 | 87000 | 0.0004 | | 0.6760 | 87500 | 0.0004 | | 0.6799 | 88000 | 0.0004 | | 0.6837 | 88500 | 0.0004 | | 0.6876 | 89000 | 0.0004 | | 0.6915 | 89500 | 0.0004 | | 0.6953 | 90000 | 0.0004 | | 0.6992 | 90500 | 0.0004 | | 0.7030 | 91000 | 0.0004 | | 0.7069 | 91500 | 0.0004 | | 0.7108 | 92000 | 0.0004 | | 0.7146 | 92500 | 0.0004 | | 0.7185 | 93000 | 0.0004 | | 0.7224 | 93500 | 0.0004 | | 0.7262 | 94000 | 0.0004 | | 0.7301 | 94500 | 0.0004 | | 0.7339 | 95000 | 0.0004 | | 0.7378 | 95500 | 0.0004 | | 0.7417 | 96000 | 0.0004 | | 0.7455 | 96500 | 0.0004 | | 0.7494 | 97000 | 0.0004 | | 0.7533 | 97500 | 0.0004 | | 0.7571 | 98000 | 0.0004 | | 0.7610 | 98500 | 0.0004 | | 0.7649 | 99000 | 0.0004 | | 0.7687 | 99500 | 0.0004 | | 0.7726 | 100000 | 0.0004 | | 0.7764 | 100500 | 0.0004 | | 0.7803 | 101000 | 0.0004 | | 0.7842 | 101500 | 0.0004 | | 0.7880 | 102000 | 0.0004 | | 0.7919 | 102500 | 0.0004 | | 0.7958 | 103000 | 0.0004 | | 0.7996 | 103500 | 0.0004 | | 0.8035 | 104000 | 0.0004 | | 0.8073 | 104500 | 0.0004 | | 0.8112 | 105000 | 0.0004 | | 0.8151 | 105500 | 0.0004 | | 0.8189 | 106000 | 0.0004 | | 0.8228 | 106500 | 0.0004 | | 0.8267 | 107000 | 0.0004 | | 0.8305 | 107500 | 0.0004 | | 0.8344 | 108000 | 0.0004 | | 0.8382 | 108500 | 0.0004 | | 0.8421 | 109000 | 0.0004 | | 0.8460 | 109500 | 0.0004 | | 0.8498 | 110000 | 0.0004 | | 0.8537 | 110500 | 0.0004 | | 0.8576 | 111000 | 0.0004 | | 0.8614 | 111500 | 0.0004 | | 0.8653 | 112000 | 0.0004 | | 0.8691 | 112500 | 0.0004 | | 0.8730 | 113000 | 0.0004 | | 0.8769 | 113500 | 0.0004 | | 0.8807 | 114000 | 0.0004 | | 0.8846 | 114500 | 0.0004 | | 0.8885 | 115000 | 0.0004 | | 0.8923 | 115500 | 0.0004 | | 0.8962 | 116000 | 0.0004 | | 0.9001 | 116500 | 0.0004 | | 0.9039 | 117000 | 0.0004 | | 0.9078 | 117500 | 0.0004 | | 0.9116 | 118000 | 0.0004 | | 0.9155 | 118500 | 0.0004 | | 0.9194 | 119000 | 0.0004 | | 0.9232 | 119500 | 0.0004 | | 0.9271 | 120000 | 0.0004 | | 0.9310 | 120500 | 0.0004 | | 0.9348 | 121000 | 0.0004 | | 0.9387 | 121500 | 0.0004 | | 0.9425 | 122000 | 0.0004 | | 0.9464 | 122500 | 0.0004 | | 0.9503 | 123000 | 0.0004 | | 0.9541 | 123500 | 0.0004 | | 0.9580 | 124000 | 0.0004 | | 0.9619 | 124500 | 0.0004 | | 0.9657 | 125000 | 0.0004 | | 0.9696 | 125500 | 0.0004 | | 0.9734 | 126000 | 0.0004 | | 0.9773 | 126500 | 0.0004 | | 0.9812 | 127000 | 0.0004 | | 0.9850 | 127500 | 0.0004 | | 0.9889 | 128000 | 0.0004 | | 0.9928 | 128500 | 0.0004 | | 0.9966 | 129000 | 0.0004 | | 1.0005 | 129500 | 0.0004 | | 1.0043 | 130000 | 0.0004 | | 1.0082 | 130500 | 0.0004 | | 1.0121 | 131000 | 0.0004 | | 1.0159 | 131500 | 0.0004 | | 1.0198 | 132000 | 0.0004 | | 1.0237 | 132500 | 0.0004 | | 1.0275 | 133000 | 0.0004 | | 1.0314 | 133500 | 0.0004 | | 1.0353 | 134000 | 0.0004 | | 1.0391 | 134500 | 0.0004 | | 1.0430 | 135000 | 0.0004 | | 1.0468 | 135500 | 0.0004 | | 1.0507 | 136000 | 0.0004 | | 1.0546 | 136500 | 0.0004 | | 1.0584 | 137000 | 0.0004 | | 1.0623 | 137500 | 0.0004 | | 1.0662 | 138000 | 0.0004 | | 1.0700 | 138500 | 0.0004 | | 1.0739 | 139000 | 0.0004 | | 1.0777 | 139500 | 0.0004 | | 1.0816 | 140000 | 0.0004 | | 1.0855 | 140500 | 0.0004 | | 1.0893 | 141000 | 0.0004 | | 1.0932 | 141500 | 0.0004 | | 1.0971 | 142000 | 0.0004 | | 1.1009 | 142500 | 0.0004 | | 1.1048 | 143000 | 0.0004 | | 1.1086 | 143500 | 0.0004 | | 1.1125 | 144000 | 0.0004 | | 1.1164 | 144500 | 0.0004 | | 1.1202 | 145000 | 0.0004 | | 1.1241 | 145500 | 0.0004 | | 1.1280 | 146000 | 0.0004 | | 1.1318 | 146500 | 0.0004 | | 1.1357 | 147000 | 0.0004 | | 1.1396 | 147500 | 0.0004 | | 1.1434 | 148000 | 0.0004 | | 1.1473 | 148500 | 0.0004 | | 1.1511 | 149000 | 0.0004 | | 1.1550 | 149500 | 0.0004 | | 1.1589 | 150000 | 0.0004 | | 1.1627 | 150500 | 0.0004 | | 1.1666 | 151000 | 0.0004 | | 1.1705 | 151500 | 0.0004 | | 1.1743 | 152000 | 0.0004 | | 1.1782 | 152500 | 0.0004 | | 1.1820 | 153000 | 0.0004 | | 1.1859 | 153500 | 0.0004 | | 1.1898 | 154000 | 0.0004 | | 1.1936 | 154500 | 0.0004 | | 1.1975 | 155000 | 0.0004 | | 1.2014 | 155500 | 0.0003 | | 1.2052 | 156000 | 0.0003 | | 1.2091 | 156500 | 0.0004 | | 1.2129 | 157000 | 0.0003 | | 1.2168 | 157500 | 0.0004 | | 1.2207 | 158000 | 0.0003 | | 1.2245 | 158500 | 0.0003 | | 1.2284 | 159000 | 0.0003 | | 1.2323 | 159500 | 0.0003 | | 1.2361 | 160000 | 0.0003 | | 1.2400 | 160500 | 0.0003 | | 1.2438 | 161000 | 0.0003 | | 1.2477 | 161500 | 0.0003 | | 1.2516 | 162000 | 0.0003 | | 1.2554 | 162500 | 0.0003 | | 1.2593 | 163000 | 0.0003 | | 1.2632 | 163500 | 0.0003 | | 1.2670 | 164000 | 0.0003 | | 1.2709 | 164500 | 0.0003 | | 1.2748 | 165000 | 0.0003 | | 1.2786 | 165500 | 0.0003 | | 1.2825 | 166000 | 0.0003 | | 1.2863 | 166500 | 0.0003 | | 1.2902 | 167000 | 0.0003 | | 1.2941 | 167500 | 0.0003 | | 1.2979 | 168000 | 0.0003 | | 1.3018 | 168500 | 0.0003 | | 1.3057 | 169000 | 0.0003 | | 1.3095 | 169500 | 0.0003 | | 1.3134 | 170000 | 0.0003 | | 1.3172 | 170500 | 0.0003 | | 1.3211 | 171000 | 0.0003 | | 1.3250 | 171500 | 0.0003 | | 1.3288 | 172000 | 0.0003 | | 1.3327 | 172500 | 0.0003 | | 1.3366 | 173000 | 0.0003 | | 1.3404 | 173500 | 0.0003 | | 1.3443 | 174000 | 0.0003 | | 1.3481 | 174500 | 0.0003 | | 1.3520 | 175000 | 0.0003 | | 1.3559 | 175500 | 0.0003 | | 1.3597 | 176000 | 0.0003 | | 1.3636 | 176500 | 0.0003 | | 1.3675 | 177000 | 0.0003 | | 1.3713 | 177500 | 0.0003 | | 1.3752 | 178000 | 0.0003 | | 1.3790 | 178500 | 0.0003 | | 1.3829 | 179000 | 0.0003 | | 1.3868 | 179500 | 0.0003 | | 1.3906 | 180000 | 0.0003 | | 1.3945 | 180500 | 0.0003 | | 1.3984 | 181000 | 0.0003 | | 1.4022 | 181500 | 0.0003 | | 1.4061 | 182000 | 0.0003 | | 1.4100 | 182500 | 0.0003 | | 1.4138 | 183000 | 0.0003 | | 1.4177 | 183500 | 0.0003 | | 1.4215 | 184000 | 0.0003 | | 1.4254 | 184500 | 0.0003 | | 1.4293 | 185000 | 0.0003 | | 1.4331 | 185500 | 0.0003 | | 1.4370 | 186000 | 0.0003 | | 1.4409 | 186500 | 0.0003 | | 1.4447 | 187000 | 0.0003 | | 1.4486 | 187500 | 0.0003 | | 1.4524 | 188000 | 0.0003 | | 1.4563 | 188500 | 0.0003 | | 1.4602 | 189000 | 0.0003 | | 1.4640 | 189500 | 0.0003 | | 1.4679 | 190000 | 0.0003 | | 1.4718 | 190500 | 0.0003 | | 1.4756 | 191000 | 0.0003 | | 1.4795 | 191500 | 0.0003 | | 1.4833 | 192000 | 0.0003 | | 1.4872 | 192500 | 0.0003 | | 1.4911 | 193000 | 0.0003 | | 1.4949 | 193500 | 0.0003 | | 1.4988 | 194000 | 0.0003 | | 1.5027 | 194500 | 0.0003 | | 1.5065 | 195000 | 0.0003 | | 1.5104 | 195500 | 0.0003 | | 1.5143 | 196000 | 0.0003 | | 1.5181 | 196500 | 0.0003 | | 1.5220 | 197000 | 0.0003 | | 1.5258 | 197500 | 0.0003 | | 1.5297 | 198000 | 0.0003 | | 1.5336 | 198500 | 0.0003 | | 1.5374 | 199000 | 0.0003 | | 1.5413 | 199500 | 0.0003 | | 1.5452 | 200000 | 0.0003 | | 1.5490 | 200500 | 0.0003 | | 1.5529 | 201000 | 0.0003 | | 1.5567 | 201500 | 0.0003 | | 1.5606 | 202000 | 0.0003 | | 1.5645 | 202500 | 0.0003 | | 1.5683 | 203000 | 0.0003 | | 1.5722 | 203500 | 0.0003 | | 1.5761 | 204000 | 0.0003 | | 1.5799 | 204500 | 0.0003 | | 1.5838 | 205000 | 0.0003 | | 1.5876 | 205500 | 0.0003 | | 1.5915 | 206000 | 0.0003 | | 1.5954 | 206500 | 0.0003 | | 1.5992 | 207000 | 0.0003 | | 1.6031 | 207500 | 0.0003 | | 1.6070 | 208000 | 0.0003 | | 1.6108 | 208500 | 0.0003 | | 1.6147 | 209000 | 0.0003 | | 1.6185 | 209500 | 0.0003 | | 1.6224 | 210000 | 0.0003 | | 1.6263 | 210500 | 0.0003 | | 1.6301 | 211000 | 0.0003 | | 1.6340 | 211500 | 0.0003 | | 1.6379 | 212000 | 0.0003 | | 1.6417 | 212500 | 0.0003 | | 1.6456 | 213000 | 0.0003 | | 1.6495 | 213500 | 0.0003 | | 1.6533 | 214000 | 0.0003 | | 1.6572 | 214500 | 0.0003 | | 1.6610 | 215000 | 0.0003 | | 1.6649 | 215500 | 0.0003 | | 1.6688 | 216000 | 0.0003 | | 1.6726 | 216500 | 0.0003 | | 1.6765 | 217000 | 0.0003 | | 1.6804 | 217500 | 0.0003 | | 1.6842 | 218000 | 0.0003 | | 1.6881 | 218500 | 0.0003 | | 1.6919 | 219000 | 0.0003 | | 1.6958 | 219500 | 0.0003 | | 1.6997 | 220000 | 0.0003 | | 1.7035 | 220500 | 0.0003 | | 1.7074 | 221000 | 0.0003 | | 1.7113 | 221500 | 0.0003 | | 1.7151 | 222000 | 0.0003 | | 1.7190 | 222500 | 0.0003 | | 1.7228 | 223000 | 0.0003 | | 1.7267 | 223500 | 0.0003 | | 1.7306 | 224000 | 0.0003 | | 1.7344 | 224500 | 0.0003 | | 1.7383 | 225000 | 0.0003 | | 1.7422 | 225500 | 0.0003 | | 1.7460 | 226000 | 0.0003 | | 1.7499 | 226500 | 0.0003 | | 1.7537 | 227000 | 0.0003 | | 1.7576 | 227500 | 0.0003 | | 1.7615 | 228000 | 0.0003 | | 1.7653 | 228500 | 0.0003 | | 1.7692 | 229000 | 0.0003 | | 1.7731 | 229500 | 0.0003 | | 1.7769 | 230000 | 0.0003 | | 1.7808 | 230500 | 0.0003 | | 1.7847 | 231000 | 0.0003 | | 1.7885 | 231500 | 0.0003 | | 1.7924 | 232000 | 0.0003 | | 1.7962 | 232500 | 0.0003 | | 1.8001 | 233000 | 0.0003 | | 1.8040 | 233500 | 0.0003 | | 1.8078 | 234000 | 0.0003 | | 1.8117 | 234500 | 0.0003 | | 1.8156 | 235000 | 0.0003 | | 1.8194 | 235500 | 0.0003 | | 1.8233 | 236000 | 0.0003 | | 1.8271 | 236500 | 0.0003 | | 1.8310 | 237000 | 0.0003 | | 1.8349 | 237500 | 0.0003 | | 1.8387 | 238000 | 0.0003 | | 1.8426 | 238500 | 0.0003 | | 1.8465 | 239000 | 0.0003 | | 1.8503 | 239500 | 0.0003 | | 1.8542 | 240000 | 0.0003 | | 1.8580 | 240500 | 0.0003 | | 1.8619 | 241000 | 0.0003 | | 1.8658 | 241500 | 0.0003 | | 1.8696 | 242000 | 0.0003 | | 1.8735 | 242500 | 0.0003 | | 1.8774 | 243000 | 0.0003 | | 1.8812 | 243500 | 0.0003 | | 1.8851 | 244000 | 0.0003 | | 1.8889 | 244500 | 0.0003 | | 1.8928 | 245000 | 0.0003 | | 1.8967 | 245500 | 0.0003 | | 1.9005 | 246000 | 0.0003 | | 1.9044 | 246500 | 0.0003 | | 1.9083 | 247000 | 0.0003 | | 1.9121 | 247500 | 0.0003 | | 1.9160 | 248000 | 0.0003 | | 1.9199 | 248500 | 0.0003 | | 1.9237 | 249000 | 0.0003 | | 1.9276 | 249500 | 0.0003 | | 1.9314 | 250000 | 0.0003 | | 1.9353 | 250500 | 0.0003 | | 1.9392 | 251000 | 0.0003 | | 1.9430 | 251500 | 0.0003 | | 1.9469 | 252000 | 0.0003 | | 1.9508 | 252500 | 0.0003 | | 1.9546 | 253000 | 0.0003 | | 1.9585 | 253500 | 0.0003 | | 1.9623 | 254000 | 0.0003 | | 1.9662 | 254500 | 0.0003 | | 1.9701 | 255000 | 0.0003 | | 1.9739 | 255500 | 0.0003 | | 1.9778 | 256000 | 0.0003 | | 1.9817 | 256500 | 0.0003 | | 1.9855 | 257000 | 0.0003 | | 1.9894 | 257500 | 0.0003 | | 1.9932 | 258000 | 0.0003 | | 1.9971 | 258500 | 0.0003 | | 2.0010 | 259000 | 0.0003 | | 2.0048 | 259500 | 0.0003 | | 2.0087 | 260000 | 0.0003 | | 2.0126 | 260500 | 0.0003 | | 2.0164 | 261000 | 0.0003 | | 2.0203 | 261500 | 0.0003 | | 2.0242 | 262000 | 0.0003 | | 2.0280 | 262500 | 0.0003 | | 2.0319 | 263000 | 0.0003 | | 2.0357 | 263500 | 0.0003 | | 2.0396 | 264000 | 0.0003 | | 2.0435 | 264500 | 0.0003 | | 2.0473 | 265000 | 0.0003 | | 2.0512 | 265500 | 0.0003 | | 2.0551 | 266000 | 0.0003 | | 2.0589 | 266500 | 0.0003 | | 2.0628 | 267000 | 0.0003 | | 2.0666 | 267500 | 0.0003 | | 2.0705 | 268000 | 0.0003 | | 2.0744 | 268500 | 0.0003 | | 2.0782 | 269000 | 0.0003 | | 2.0821 | 269500 | 0.0003 | | 2.0860 | 270000 | 0.0003 | | 2.0898 | 270500 | 0.0003 | | 2.0937 | 271000 | 0.0003 | | 2.0975 | 271500 | 0.0003 | | 2.1014 | 272000 | 0.0003 | | 2.1053 | 272500 | 0.0003 | | 2.1091 | 273000 | 0.0003 | | 2.1130 | 273500 | 0.0003 | | 2.1169 | 274000 | 0.0003 | | 2.1207 | 274500 | 0.0003 | | 2.1246 | 275000 | 0.0003 | | 2.1284 | 275500 | 0.0003 | | 2.1323 | 276000 | 0.0003 | | 2.1362 | 276500 | 0.0003 | | 2.1400 | 277000 | 0.0003 | | 2.1439 | 277500 | 0.0003 | | 2.1478 | 278000 | 0.0003 | | 2.1516 | 278500 | 0.0003 | | 2.1555 | 279000 | 0.0003 | | 2.1594 | 279500 | 0.0003 | | 2.1632 | 280000 | 0.0003 | | 2.1671 | 280500 | 0.0003 | | 2.1709 | 281000 | 0.0003 | | 2.1748 | 281500 | 0.0003 | | 2.1787 | 282000 | 0.0003 | | 2.1825 | 282500 | 0.0003 | | 2.1864 | 283000 | 0.0003 | | 2.1903 | 283500 | 0.0003 | | 2.1941 | 284000 | 0.0003 | | 2.1980 | 284500 | 0.0003 | | 2.2018 | 285000 | 0.0003 | | 2.2057 | 285500 | 0.0003 | | 2.2096 | 286000 | 0.0003 | | 2.2134 | 286500 | 0.0003 | | 2.2173 | 287000 | 0.0003 | | 2.2212 | 287500 | 0.0003 | | 2.2250 | 288000 | 0.0003 | | 2.2289 | 288500 | 0.0003 | | 2.2327 | 289000 | 0.0003 | | 2.2366 | 289500 | 0.0003 | | 2.2405 | 290000 | 0.0003 | | 2.2443 | 290500 | 0.0003 | | 2.2482 | 291000 | 0.0003 | | 2.2521 | 291500 | 0.0003 | | 2.2559 | 292000 | 0.0003 | | 2.2598 | 292500 | 0.0003 | | 2.2636 | 293000 | 0.0003 | | 2.2675 | 293500 | 0.0003 | | 2.2714 | 294000 | 0.0003 | | 2.2752 | 294500 | 0.0003 | | 2.2791 | 295000 | 0.0003 | | 2.2830 | 295500 | 0.0003 | | 2.2868 | 296000 | 0.0003 | | 2.2907 | 296500 | 0.0003 | | 2.2946 | 297000 | 0.0003 | | 2.2984 | 297500 | 0.0003 | | 2.3023 | 298000 | 0.0003 | | 2.3061 | 298500 | 0.0003 | | 2.3100 | 299000 | 0.0003 | | 2.3139 | 299500 | 0.0003 | | 2.3177 | 300000 | 0.0003 | | 2.3216 | 300500 | 0.0003 | | 2.3255 | 301000 | 0.0003 | | 2.3293 | 301500 | 0.0003 | | 2.3332 | 302000 | 0.0003 | | 2.3370 | 302500 | 0.0003 | | 2.3409 | 303000 | 0.0003 | | 2.3448 | 303500 | 0.0003 | | 2.3486 | 304000 | 0.0003 | | 2.3525 | 304500 | 0.0003 | | 2.3564 | 305000 | 0.0003 | | 2.3602 | 305500 | 0.0003 | | 2.3641 | 306000 | 0.0003 | | 2.3679 | 306500 | 0.0003 | | 2.3718 | 307000 | 0.0003 | | 2.3757 | 307500 | 0.0003 | | 2.3795 | 308000 | 0.0003 | | 2.3834 | 308500 | 0.0003 | | 2.3873 | 309000 | 0.0003 | | 2.3911 | 309500 | 0.0003 | | 2.3950 | 310000 | 0.0003 | | 2.3989 | 310500 | 0.0003 | | 2.4027 | 311000 | 0.0003 | | 2.4066 | 311500 | 0.0003 | | 2.4104 | 312000 | 0.0003 | | 2.4143 | 312500 | 0.0003 | | 2.4182 | 313000 | 0.0003 | | 2.4220 | 313500 | 0.0003 | | 2.4259 | 314000 | 0.0003 | | 2.4298 | 314500 | 0.0003 | | 2.4336 | 315000 | 0.0003 | | 2.4375 | 315500 | 0.0003 | | 2.4413 | 316000 | 0.0003 | | 2.4452 | 316500 | 0.0003 | | 2.4491 | 317000 | 0.0003 | | 2.4529 | 317500 | 0.0003 | | 2.4568 | 318000 | 0.0003 | | 2.4607 | 318500 | 0.0003 | | 2.4645 | 319000 | 0.0003 | | 2.4684 | 319500 | 0.0003 | | 2.4722 | 320000 | 0.0003 | | 2.4761 | 320500 | 0.0003 | | 2.4800 | 321000 | 0.0003 | | 2.4838 | 321500 | 0.0003 | | 2.4877 | 322000 | 0.0003 | | 2.4916 | 322500 | 0.0003 | | 2.4954 | 323000 | 0.0003 | | 2.4993 | 323500 | 0.0003 | | 2.5031 | 324000 | 0.0003 | | 2.5070 | 324500 | 0.0003 | | 2.5109 | 325000 | 0.0003 | | 2.5147 | 325500 | 0.0003 | | 2.5186 | 326000 | 0.0003 | | 2.5225 | 326500 | 0.0003 | | 2.5263 | 327000 | 0.0003 | | 2.5302 | 327500 | 0.0003 | | 2.5341 | 328000 | 0.0003 | | 2.5379 | 328500 | 0.0003 | | 2.5418 | 329000 | 0.0003 | | 2.5456 | 329500 | 0.0003 | | 2.5495 | 330000 | 0.0003 | | 2.5534 | 330500 | 0.0003 | | 2.5572 | 331000 | 0.0003 | | 2.5611 | 331500 | 0.0003 | | 2.5650 | 332000 | 0.0003 | | 2.5688 | 332500 | 0.0003 | | 2.5727 | 333000 | 0.0003 | | 2.5765 | 333500 | 0.0003 | | 2.5804 | 334000 | 0.0003 | | 2.5843 | 334500 | 0.0003 | | 2.5881 | 335000 | 0.0003 | | 2.5920 | 335500 | 0.0003 | | 2.5959 | 336000 | 0.0003 | | 2.5997 | 336500 | 0.0003 | | 2.6036 | 337000 | 0.0003 | | 2.6074 | 337500 | 0.0003 | | 2.6113 | 338000 | 0.0003 | | 2.6152 | 338500 | 0.0003 | | 2.6190 | 339000 | 0.0003 | | 2.6229 | 339500 | 0.0003 | | 2.6268 | 340000 | 0.0003 | | 2.6306 | 340500 | 0.0003 | | 2.6345 | 341000 | 0.0003 | | 2.6383 | 341500 | 0.0003 | | 2.6422 | 342000 | 0.0003 | | 2.6461 | 342500 | 0.0003 | | 2.6499 | 343000 | 0.0003 | | 2.6538 | 343500 | 0.0003 | | 2.6577 | 344000 | 0.0003 | | 2.6615 | 344500 | 0.0003 | | 2.6654 | 345000 | 0.0003 | | 2.6693 | 345500 | 0.0003 | | 2.6731 | 346000 | 0.0003 | | 2.6770 | 346500 | 0.0003 | | 2.6808 | 347000 | 0.0003 | | 2.6847 | 347500 | 0.0003 | | 2.6886 | 348000 | 0.0003 | | 2.6924 | 348500 | 0.0003 | | 2.6963 | 349000 | 0.0003 | | 2.7002 | 349500 | 0.0003 | | 2.7040 | 350000 | 0.0003 | | 2.7079 | 350500 | 0.0003 | | 2.7117 | 351000 | 0.0003 | | 2.7156 | 351500 | 0.0003 | | 2.7195 | 352000 | 0.0003 | | 2.7233 | 352500 | 0.0003 | | 2.7272 | 353000 | 0.0003 | | 2.7311 | 353500 | 0.0003 | | 2.7349 | 354000 | 0.0003 | | 2.7388 | 354500 | 0.0003 | | 2.7426 | 355000 | 0.0003 | | 2.7465 | 355500 | 0.0003 | | 2.7504 | 356000 | 0.0003 | | 2.7542 | 356500 | 0.0003 | | 2.7581 | 357000 | 0.0003 | | 2.7620 | 357500 | 0.0003 | | 2.7658 | 358000 | 0.0003 | | 2.7697 | 358500 | 0.0003 | | 2.7736 | 359000 | 0.0003 | | 2.7774 | 359500 | 0.0003 | | 2.7813 | 360000 | 0.0003 | | 2.7851 | 360500 | 0.0003 | | 2.7890 | 361000 | 0.0003 | | 2.7929 | 361500 | 0.0003 | | 2.7967 | 362000 | 0.0003 | | 2.8006 | 362500 | 0.0003 | | 2.8045 | 363000 | 0.0003 | | 2.8083 | 363500 | 0.0003 | | 2.8122 | 364000 | 0.0003 | | 2.8160 | 364500 | 0.0003 | | 2.8199 | 365000 | 0.0003 | | 2.8238 | 365500 | 0.0003 | | 2.8276 | 366000 | 0.0003 | | 2.8315 | 366500 | 0.0003 | | 2.8354 | 367000 | 0.0003 | | 2.8392 | 367500 | 0.0003 | | 2.8431 | 368000 | 0.0003 | | 2.8469 | 368500 | 0.0003 | | 2.8508 | 369000 | 0.0003 | | 2.8547 | 369500 | 0.0003 | | 2.8585 | 370000 | 0.0003 | | 2.8624 | 370500 | 0.0003 | | 2.8663 | 371000 | 0.0003 | | 2.8701 | 371500 | 0.0003 | | 2.8740 | 372000 | 0.0003 | | 2.8778 | 372500 | 0.0003 | | 2.8817 | 373000 | 0.0003 | | 2.8856 | 373500 | 0.0003 | | 2.8894 | 374000 | 0.0003 | | 2.8933 | 374500 | 0.0003 | | 2.8972 | 375000 | 0.0003 | | 2.9010 | 375500 | 0.0003 | | 2.9049 | 376000 | 0.0003 | | 2.9088 | 376500 | 0.0003 | | 2.9126 | 377000 | 0.0003 | | 2.9165 | 377500 | 0.0003 | | 2.9203 | 378000 | 0.0003 | | 2.9242 | 378500 | 0.0003 | | 2.9281 | 379000 | 0.0003 | | 2.9319 | 379500 | 0.0003 | | 2.9358 | 380000 | 0.0003 | | 2.9397 | 380500 | 0.0003 | | 2.9435 | 381000 | 0.0003 | | 2.9474 | 381500 | 0.0003 | | 2.9512 | 382000 | 0.0003 | | 2.9551 | 382500 | 0.0003 | | 2.9590 | 383000 | 0.0003 | | 2.9628 | 383500 | 0.0003 | | 2.9667 | 384000 | 0.0003 | | 2.9706 | 384500 | 0.0003 | | 2.9744 | 385000 | 0.0003 | | 2.9783 | 385500 | 0.0003 | | 2.9821 | 386000 | 0.0003 | | 2.9860 | 386500 | 0.0003 | | 2.9899 | 387000 | 0.0003 | | 2.9937 | 387500 | 0.0003 | | 2.9976 | 388000 | 0.0003 |
### Framework Versions - Python: 3.10.13 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.5.1+cu121 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MSELoss ```bibtex @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ```