Upload fine-tuned AZ-EN sentence embedding model (checkpoint-388311)
Browse files- 1_Pooling/config.json +10 -0
- README.md +1154 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +53 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:8283932
|
| 8 |
+
- loss:MSELoss
|
| 9 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: Through the Southern Gas Corridor pipeline, gas supply to the European
|
| 12 |
+
Union increased from 8.1 billion cubic meters in 2021 to 11.4 billion cubic meters
|
| 13 |
+
in 2022.
|
| 14 |
+
sentences:
|
| 15 |
+
- After this meeting, the monthly amount collected from prosecutors and investigators
|
| 16 |
+
for the building was increased from 460 manats to 480 manats.
|
| 17 |
+
- Məlik-Aslanov 1919-cu il fevralın 18-dək həm də müvəqqəti olaraq ticarət, sənaye
|
| 18 |
+
və ərzaq nazirinin səlahiyyətlərini də yerinə yetirmişdi.
|
| 19 |
+
- Üçüncü mərhələdə isə Şura hər bir layihə üzrə təqdim olunmuş ekspert rəyini, QHT-nin
|
| 20 |
+
Şuranın maliyyə dəstəyi hesabına əvvəlki illərdə həyata keçirdiyi layihənin icra
|
| 21 |
+
vəziyyətini və layihə idarəetmə təcrübəsini nəzərə alaraq yekun qərar qəbul edir.
|
| 22 |
+
- source_sentence: '“Azərbaycan Uşaqlar Birliyi”nin sədri Kəmalə Ağazadə isə məsələnin
|
| 23 |
+
Elinanın deyil, digər şəxslərin üzərində fokuslanmasının doğru olmadığını bildirdi:
|
| 24 |
+
“Elinanın intiharı ilə bağlı məsələ bu gün də sosial şəbəkələrdə xeyli müzakirə
|
| 25 |
+
edilir, müxtəlif fikirlər bildirilir.'
|
| 26 |
+
sentences:
|
| 27 |
+
- 1952-ci ilin aprelindən başlayaraq, "Azərbaycan Kültür Dərnəyi" tərəfindən Ankarada
|
| 28 |
+
aylıq "Azərbaycan" jurnalı nəşr olunur.
|
| 29 |
+
- G. Məmmədovanın fikrincə abidənin konstruktiv həllinin analizi, kvadrat təməldən
|
| 30 |
+
dairəvi dacili və səkkizbucaqlı xarici barabana keçidin yelkənlərlə təmin edilməsinə
|
| 31 |
+
əsasən kilsəni təxminən VII-VIII əsrlərə aid etmək mümkündür.
|
| 32 |
+
- However, a signature campaign was conducted in the country to hold a referendum
|
| 33 |
+
on extending Nursultan Nazarbayev’s term, and nearly 5 million signatures were
|
| 34 |
+
collected.
|
| 35 |
+
- source_sentence: Thus, we preserve our history, traditions, and culture, and we
|
| 36 |
+
do a lot to support each other.
|
| 37 |
+
sentences:
|
| 38 |
+
- Belə ki, ara yoldan Bakıxanov küçəsinə çıxan “Mercedes”in sürücü Özal Quliyevin
|
| 39 |
+
üstünlük nişanının tələbinə əməl etməməsi qəza ilə nəticələnib.
|
| 40 |
+
- Bundan başqa, onun sözlərinə görə, OPEK+ razılaşması neft bazarının məhsul artıqlığından
|
| 41 |
+
qurtulmasına kömək edib.
|
| 42 |
+
- Onun fikrincə, İranın Azərbaycan vilayətləri də “Cənubi Azərbaycan” olmalıdır.
|
| 43 |
+
- source_sentence: It's true that, although Shahriyar, who is in the top four alongside
|
| 44 |
+
Aronyan in the rankings, couldn't win this match.
|
| 45 |
+
sentences:
|
| 46 |
+
- After spending a year in exile, his father Sultan Abdul Hamid sent him to Istanbul
|
| 47 |
+
along with his sisters Ayşe Sultan and Şadiye Sultan, and asked his brother Sultan
|
| 48 |
+
Reşad to arrange their marriages.
|
| 49 |
+
- Bu, ilk dəfədir ki ABŞ hərbi qüvvələri Rusiyanın keçən ay gizli olaraq raketlər
|
| 50 |
+
yerləşdirilməsini ictimai şəkildə təsdiq edir.
|
| 51 |
+
- He noted that the Supreme Court held seven sessions, thoroughly reviewed the lower
|
| 52 |
+
court’s investigation, and upheld the death sentence.
|
| 53 |
+
- source_sentence: At the same time, it is no secret that Washington’s strategic plans
|
| 54 |
+
for the Middle East include changing the current Iranian regime, which opposes
|
| 55 |
+
Western interests in the region.
|
| 56 |
+
sentences:
|
| 57 |
+
- Sürücü Ə.Nəzərovla maşındakı digər sərnişinlər Rahim Mahmudov və Anar Bayramov
|
| 58 |
+
isə müxtəlif dərəcəli bədən xəsarətləri ilə Lənkəran Mərkəzi Rayon Xəstəxanasına
|
| 59 |
+
yerləşdirilib.
|
| 60 |
+
- In addition, Turkey was demanding the territory that included the districts of
|
| 61 |
+
Akhaltsikhe, Akhalkalaki, Alexandropol (Gyumri), Surmali, and Nakhchivan.
|
| 62 |
+
- Bu vəziyyət kilsə meydanını düzəltdiyindən və qolları bərabər uzunluqda olan xaç
|
| 63 |
+
planı aydınlaşmadığı üçün bu plan növü qapalı yunan xaçı planı adlandırılır.
|
| 64 |
+
pipeline_tag: sentence-similarity
|
| 65 |
+
library_name: sentence-transformers
|
| 66 |
+
---
|
| 67 |
+
|
| 68 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
| 69 |
+
|
| 70 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 71 |
+
|
| 72 |
+
## Model Details
|
| 73 |
+
|
| 74 |
+
### Model Description
|
| 75 |
+
- **Model Type:** Sentence Transformer
|
| 76 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
|
| 77 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 78 |
+
- **Output Dimensionality:** 384 dimensions
|
| 79 |
+
- **Similarity Function:** Cosine Similarity
|
| 80 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 81 |
+
<!-- - **Language:** Unknown -->
|
| 82 |
+
<!-- - **License:** Unknown -->
|
| 83 |
+
|
| 84 |
+
### Model Sources
|
| 85 |
+
|
| 86 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 87 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 88 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 89 |
+
|
| 90 |
+
### Full Model Architecture
|
| 91 |
+
|
| 92 |
+
```
|
| 93 |
+
SentenceTransformer(
|
| 94 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 95 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 96 |
+
(2): Normalize()
|
| 97 |
+
)
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
## Usage
|
| 101 |
+
|
| 102 |
+
### Direct Usage (Sentence Transformers)
|
| 103 |
+
|
| 104 |
+
First install the Sentence Transformers library:
|
| 105 |
+
|
| 106 |
+
```bash
|
| 107 |
+
pip install -U sentence-transformers
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
Then you can load this model and run inference.
|
| 111 |
+
```python
|
| 112 |
+
from sentence_transformers import SentenceTransformer
|
| 113 |
+
|
| 114 |
+
# Download from the 🤗 Hub
|
| 115 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 116 |
+
# Run inference
|
| 117 |
+
sentences = [
|
| 118 |
+
'At the same time, it is no secret that Washington’s strategic plans for the Middle East include changing the current Iranian regime, which opposes Western interests in the region.',
|
| 119 |
+
'In addition, Turkey was demanding the territory that included the districts of Akhaltsikhe, Akhalkalaki, Alexandropol (Gyumri), Surmali, and Nakhchivan.',
|
| 120 |
+
'Sürücü Ə.Nəzərovla maşındakı digər sərnişinlər Rahim Mahmudov və Anar Bayramov isə müxtəlif dərəcəli bədən xəsarətləri ilə Lənkəran Mərkəzi Rayon Xəstəxanasına yerləşdirilib.',
|
| 121 |
+
]
|
| 122 |
+
embeddings = model.encode(sentences)
|
| 123 |
+
print(embeddings.shape)
|
| 124 |
+
# [3, 384]
|
| 125 |
+
|
| 126 |
+
# Get the similarity scores for the embeddings
|
| 127 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 128 |
+
print(similarities.shape)
|
| 129 |
+
# [3, 3]
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
<!--
|
| 133 |
+
### Direct Usage (Transformers)
|
| 134 |
+
|
| 135 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 136 |
+
|
| 137 |
+
</details>
|
| 138 |
+
-->
|
| 139 |
+
|
| 140 |
+
<!--
|
| 141 |
+
### Downstream Usage (Sentence Transformers)
|
| 142 |
+
|
| 143 |
+
You can finetune this model on your own dataset.
|
| 144 |
+
|
| 145 |
+
<details><summary>Click to expand</summary>
|
| 146 |
+
|
| 147 |
+
</details>
|
| 148 |
+
-->
|
| 149 |
+
|
| 150 |
+
<!--
|
| 151 |
+
### Out-of-Scope Use
|
| 152 |
+
|
| 153 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 154 |
+
-->
|
| 155 |
+
|
| 156 |
+
<!--
|
| 157 |
+
## Bias, Risks and Limitations
|
| 158 |
+
|
| 159 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 160 |
+
-->
|
| 161 |
+
|
| 162 |
+
<!--
|
| 163 |
+
### Recommendations
|
| 164 |
+
|
| 165 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 166 |
+
-->
|
| 167 |
+
|
| 168 |
+
## Training Details
|
| 169 |
+
|
| 170 |
+
### Training Dataset
|
| 171 |
+
|
| 172 |
+
#### Unnamed Dataset
|
| 173 |
+
|
| 174 |
+
* Size: 8,283,932 training samples
|
| 175 |
+
* Columns: <code>sentence_0</code> and <code>label</code>
|
| 176 |
+
* Approximate statistics based on the first 1000 samples:
|
| 177 |
+
| | sentence_0 | label |
|
| 178 |
+
|:--------|:---------------------------------------------------------------------------------|:-------------------------------------|
|
| 179 |
+
| type | string | list |
|
| 180 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 29.8 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> |
|
| 181 |
+
* Samples:
|
| 182 |
+
| sentence_0 | label |
|
| 183 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
|
| 184 |
+
| <code>“Biz “Hizbullah”a axan maliyyə dəstəyini dayandırmaq istəyirik və bu məqsədlə ABŞ hökuməti tutarlı məlumat qarşılığında 10 milyon dollaradək mükafat verməklə yanaşı digər tədbirlər də görəcək”, - Evanoff belə deyib.</code> | <code>[-0.022054675966501236, 0.0932646170258522, -0.01854480803012848, -0.025271562859416008, 0.028432276099920273, ...]</code> |
|
| 185 |
+
| <code>Bu dövləti bu gün müxalifətdə olanlar quranda Əli Həsənovun harada nə işlə məşğul olduğu bəlli deyildi.</code> | <code>[-0.012831359170377254, 0.022371841594576836, -0.0271938294172287, 0.09667906910181046, 0.009270057082176208, ...]</code> |
|
| 186 |
+
| <code>APA-nın “Hürriyet” qəzetinə istinadən verdiyi məlumata görə, ABŞ Hərbi Hava Qüvvələrinn Komandanlığı ən son 1991-ci ildə Körfəz savaşında istifadə edilmiş B-52 təyyarələrinin Qətərə göndərildiyini açıqlayıb.</code> | <code>[-0.01321476697921753, 0.06281372904777527, 0.005026344675570726, -0.004140781704336405, 0.04239720478653908, ...]</code> |
|
| 187 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
| 188 |
+
|
| 189 |
+
### Training Hyperparameters
|
| 190 |
+
#### Non-Default Hyperparameters
|
| 191 |
+
|
| 192 |
+
- `per_device_train_batch_size`: 64
|
| 193 |
+
- `per_device_eval_batch_size`: 64
|
| 194 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 195 |
+
|
| 196 |
+
#### All Hyperparameters
|
| 197 |
+
<details><summary>Click to expand</summary>
|
| 198 |
+
|
| 199 |
+
- `overwrite_output_dir`: False
|
| 200 |
+
- `do_predict`: False
|
| 201 |
+
- `eval_strategy`: no
|
| 202 |
+
- `prediction_loss_only`: True
|
| 203 |
+
- `per_device_train_batch_size`: 64
|
| 204 |
+
- `per_device_eval_batch_size`: 64
|
| 205 |
+
- `per_gpu_train_batch_size`: None
|
| 206 |
+
- `per_gpu_eval_batch_size`: None
|
| 207 |
+
- `gradient_accumulation_steps`: 1
|
| 208 |
+
- `eval_accumulation_steps`: None
|
| 209 |
+
- `torch_empty_cache_steps`: None
|
| 210 |
+
- `learning_rate`: 5e-05
|
| 211 |
+
- `weight_decay`: 0.0
|
| 212 |
+
- `adam_beta1`: 0.9
|
| 213 |
+
- `adam_beta2`: 0.999
|
| 214 |
+
- `adam_epsilon`: 1e-08
|
| 215 |
+
- `max_grad_norm`: 1
|
| 216 |
+
- `num_train_epochs`: 3
|
| 217 |
+
- `max_steps`: -1
|
| 218 |
+
- `lr_scheduler_type`: linear
|
| 219 |
+
- `lr_scheduler_kwargs`: {}
|
| 220 |
+
- `warmup_ratio`: 0.0
|
| 221 |
+
- `warmup_steps`: 0
|
| 222 |
+
- `log_level`: passive
|
| 223 |
+
- `log_level_replica`: warning
|
| 224 |
+
- `log_on_each_node`: True
|
| 225 |
+
- `logging_nan_inf_filter`: True
|
| 226 |
+
- `save_safetensors`: True
|
| 227 |
+
- `save_on_each_node`: False
|
| 228 |
+
- `save_only_model`: False
|
| 229 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 230 |
+
- `no_cuda`: False
|
| 231 |
+
- `use_cpu`: False
|
| 232 |
+
- `use_mps_device`: False
|
| 233 |
+
- `seed`: 42
|
| 234 |
+
- `data_seed`: None
|
| 235 |
+
- `jit_mode_eval`: False
|
| 236 |
+
- `use_ipex`: False
|
| 237 |
+
- `bf16`: False
|
| 238 |
+
- `fp16`: False
|
| 239 |
+
- `fp16_opt_level`: O1
|
| 240 |
+
- `half_precision_backend`: auto
|
| 241 |
+
- `bf16_full_eval`: False
|
| 242 |
+
- `fp16_full_eval`: False
|
| 243 |
+
- `tf32`: None
|
| 244 |
+
- `local_rank`: 0
|
| 245 |
+
- `ddp_backend`: None
|
| 246 |
+
- `tpu_num_cores`: None
|
| 247 |
+
- `tpu_metrics_debug`: False
|
| 248 |
+
- `debug`: []
|
| 249 |
+
- `dataloader_drop_last`: False
|
| 250 |
+
- `dataloader_num_workers`: 0
|
| 251 |
+
- `dataloader_prefetch_factor`: None
|
| 252 |
+
- `past_index`: -1
|
| 253 |
+
- `disable_tqdm`: False
|
| 254 |
+
- `remove_unused_columns`: True
|
| 255 |
+
- `label_names`: None
|
| 256 |
+
- `load_best_model_at_end`: False
|
| 257 |
+
- `ignore_data_skip`: False
|
| 258 |
+
- `fsdp`: []
|
| 259 |
+
- `fsdp_min_num_params`: 0
|
| 260 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 261 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 262 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 263 |
+
- `deepspeed`: None
|
| 264 |
+
- `label_smoothing_factor`: 0.0
|
| 265 |
+
- `optim`: adamw_torch
|
| 266 |
+
- `optim_args`: None
|
| 267 |
+
- `adafactor`: False
|
| 268 |
+
- `group_by_length`: False
|
| 269 |
+
- `length_column_name`: length
|
| 270 |
+
- `ddp_find_unused_parameters`: None
|
| 271 |
+
- `ddp_bucket_cap_mb`: None
|
| 272 |
+
- `ddp_broadcast_buffers`: False
|
| 273 |
+
- `dataloader_pin_memory`: True
|
| 274 |
+
- `dataloader_persistent_workers`: False
|
| 275 |
+
- `skip_memory_metrics`: True
|
| 276 |
+
- `use_legacy_prediction_loop`: False
|
| 277 |
+
- `push_to_hub`: False
|
| 278 |
+
- `resume_from_checkpoint`: None
|
| 279 |
+
- `hub_model_id`: None
|
| 280 |
+
- `hub_strategy`: every_save
|
| 281 |
+
- `hub_private_repo`: None
|
| 282 |
+
- `hub_always_push`: False
|
| 283 |
+
- `gradient_checkpointing`: False
|
| 284 |
+
- `gradient_checkpointing_kwargs`: None
|
| 285 |
+
- `include_inputs_for_metrics`: False
|
| 286 |
+
- `include_for_metrics`: []
|
| 287 |
+
- `eval_do_concat_batches`: True
|
| 288 |
+
- `fp16_backend`: auto
|
| 289 |
+
- `push_to_hub_model_id`: None
|
| 290 |
+
- `push_to_hub_organization`: None
|
| 291 |
+
- `mp_parameters`:
|
| 292 |
+
- `auto_find_batch_size`: False
|
| 293 |
+
- `full_determinism`: False
|
| 294 |
+
- `torchdynamo`: None
|
| 295 |
+
- `ray_scope`: last
|
| 296 |
+
- `ddp_timeout`: 1800
|
| 297 |
+
- `torch_compile`: False
|
| 298 |
+
- `torch_compile_backend`: None
|
| 299 |
+
- `torch_compile_mode`: None
|
| 300 |
+
- `include_tokens_per_second`: False
|
| 301 |
+
- `include_num_input_tokens_seen`: False
|
| 302 |
+
- `neftune_noise_alpha`: None
|
| 303 |
+
- `optim_target_modules`: None
|
| 304 |
+
- `batch_eval_metrics`: False
|
| 305 |
+
- `eval_on_start`: False
|
| 306 |
+
- `use_liger_kernel`: False
|
| 307 |
+
- `eval_use_gather_object`: False
|
| 308 |
+
- `average_tokens_across_devices`: False
|
| 309 |
+
- `prompts`: None
|
| 310 |
+
- `batch_sampler`: batch_sampler
|
| 311 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 312 |
+
|
| 313 |
+
</details>
|
| 314 |
+
|
| 315 |
+
### Training Logs
|
| 316 |
+
<details><summary>Click to expand</summary>
|
| 317 |
+
|
| 318 |
+
| Epoch | Step | Training Loss |
|
| 319 |
+
|:------:|:------:|:-------------:|
|
| 320 |
+
| 0.0039 | 500 | 0.0035 |
|
| 321 |
+
| 0.0077 | 1000 | 0.0024 |
|
| 322 |
+
| 0.0116 | 1500 | 0.0022 |
|
| 323 |
+
| 0.0155 | 2000 | 0.002 |
|
| 324 |
+
| 0.0193 | 2500 | 0.0019 |
|
| 325 |
+
| 0.0232 | 3000 | 0.0019 |
|
| 326 |
+
| 0.0270 | 3500 | 0.0018 |
|
| 327 |
+
| 0.0309 | 4000 | 0.0018 |
|
| 328 |
+
| 0.0348 | 4500 | 0.0017 |
|
| 329 |
+
| 0.0386 | 5000 | 0.0017 |
|
| 330 |
+
| 0.0425 | 5500 | 0.0016 |
|
| 331 |
+
| 0.0464 | 6000 | 0.0016 |
|
| 332 |
+
| 0.0502 | 6500 | 0.0016 |
|
| 333 |
+
| 0.0541 | 7000 | 0.0016 |
|
| 334 |
+
| 0.0579 | 7500 | 0.0015 |
|
| 335 |
+
| 0.0618 | 8000 | 0.0015 |
|
| 336 |
+
| 0.0657 | 8500 | 0.0015 |
|
| 337 |
+
| 0.0695 | 9000 | 0.0014 |
|
| 338 |
+
| 0.0734 | 9500 | 0.0014 |
|
| 339 |
+
| 0.0773 | 10000 | 0.0014 |
|
| 340 |
+
| 0.0811 | 10500 | 0.0013 |
|
| 341 |
+
| 0.0850 | 11000 | 0.0013 |
|
| 342 |
+
| 0.0888 | 11500 | 0.0013 |
|
| 343 |
+
| 0.0927 | 12000 | 0.0012 |
|
| 344 |
+
| 0.0966 | 12500 | 0.0012 |
|
| 345 |
+
| 0.1004 | 13000 | 0.0012 |
|
| 346 |
+
| 0.1043 | 13500 | 0.0012 |
|
| 347 |
+
| 0.1082 | 14000 | 0.0011 |
|
| 348 |
+
| 0.1120 | 14500 | 0.0011 |
|
| 349 |
+
| 0.1159 | 15000 | 0.0011 |
|
| 350 |
+
| 0.1197 | 15500 | 0.0011 |
|
| 351 |
+
| 0.1236 | 16000 | 0.0011 |
|
| 352 |
+
| 0.1275 | 16500 | 0.001 |
|
| 353 |
+
| 0.1313 | 17000 | 0.001 |
|
| 354 |
+
| 0.1352 | 17500 | 0.001 |
|
| 355 |
+
| 0.1391 | 18000 | 0.001 |
|
| 356 |
+
| 0.1429 | 18500 | 0.001 |
|
| 357 |
+
| 0.1468 | 19000 | 0.0009 |
|
| 358 |
+
| 0.1507 | 19500 | 0.0009 |
|
| 359 |
+
| 0.1545 | 20000 | 0.0009 |
|
| 360 |
+
| 0.1584 | 20500 | 0.0009 |
|
| 361 |
+
| 0.1622 | 21000 | 0.0009 |
|
| 362 |
+
| 0.1661 | 21500 | 0.0008 |
|
| 363 |
+
| 0.1700 | 22000 | 0.0008 |
|
| 364 |
+
| 0.1738 | 22500 | 0.0008 |
|
| 365 |
+
| 0.1777 | 23000 | 0.0008 |
|
| 366 |
+
| 0.1816 | 23500 | 0.0008 |
|
| 367 |
+
| 0.1854 | 24000 | 0.0008 |
|
| 368 |
+
| 0.1893 | 24500 | 0.0008 |
|
| 369 |
+
| 0.1931 | 25000 | 0.0008 |
|
| 370 |
+
| 0.1970 | 25500 | 0.0007 |
|
| 371 |
+
| 0.2009 | 26000 | 0.0007 |
|
| 372 |
+
| 0.2047 | 26500 | 0.0007 |
|
| 373 |
+
| 0.2086 | 27000 | 0.0007 |
|
| 374 |
+
| 0.2125 | 27500 | 0.0007 |
|
| 375 |
+
| 0.2163 | 28000 | 0.0007 |
|
| 376 |
+
| 0.2202 | 28500 | 0.0007 |
|
| 377 |
+
| 0.2240 | 29000 | 0.0007 |
|
| 378 |
+
| 0.2279 | 29500 | 0.0007 |
|
| 379 |
+
| 0.2318 | 30000 | 0.0007 |
|
| 380 |
+
| 0.2356 | 30500 | 0.0007 |
|
| 381 |
+
| 0.2395 | 31000 | 0.0007 |
|
| 382 |
+
| 0.2434 | 31500 | 0.0006 |
|
| 383 |
+
| 0.2472 | 32000 | 0.0006 |
|
| 384 |
+
| 0.2511 | 32500 | 0.0006 |
|
| 385 |
+
| 0.2550 | 33000 | 0.0006 |
|
| 386 |
+
| 0.2588 | 33500 | 0.0006 |
|
| 387 |
+
| 0.2627 | 34000 | 0.0006 |
|
| 388 |
+
| 0.2665 | 34500 | 0.0006 |
|
| 389 |
+
| 0.2704 | 35000 | 0.0006 |
|
| 390 |
+
| 0.2743 | 35500 | 0.0006 |
|
| 391 |
+
| 0.2781 | 36000 | 0.0006 |
|
| 392 |
+
| 0.2820 | 36500 | 0.0006 |
|
| 393 |
+
| 0.2859 | 37000 | 0.0006 |
|
| 394 |
+
| 0.2897 | 37500 | 0.0006 |
|
| 395 |
+
| 0.2936 | 38000 | 0.0006 |
|
| 396 |
+
| 0.2974 | 38500 | 0.0006 |
|
| 397 |
+
| 0.3013 | 39000 | 0.0006 |
|
| 398 |
+
| 0.3052 | 39500 | 0.0006 |
|
| 399 |
+
| 0.3090 | 40000 | 0.0006 |
|
| 400 |
+
| 0.3129 | 40500 | 0.0006 |
|
| 401 |
+
| 0.3168 | 41000 | 0.0006 |
|
| 402 |
+
| 0.3206 | 41500 | 0.0005 |
|
| 403 |
+
| 0.3245 | 42000 | 0.0005 |
|
| 404 |
+
| 0.3283 | 42500 | 0.0005 |
|
| 405 |
+
| 0.3322 | 43000 | 0.0005 |
|
| 406 |
+
| 0.3361 | 43500 | 0.0005 |
|
| 407 |
+
| 0.3399 | 44000 | 0.0005 |
|
| 408 |
+
| 0.3438 | 44500 | 0.0005 |
|
| 409 |
+
| 0.3477 | 45000 | 0.0005 |
|
| 410 |
+
| 0.3515 | 45500 | 0.0005 |
|
| 411 |
+
| 0.3554 | 46000 | 0.0005 |
|
| 412 |
+
| 0.3592 | 46500 | 0.0005 |
|
| 413 |
+
| 0.3631 | 47000 | 0.0005 |
|
| 414 |
+
| 0.3670 | 47500 | 0.0005 |
|
| 415 |
+
| 0.3708 | 48000 | 0.0005 |
|
| 416 |
+
| 0.3747 | 48500 | 0.0005 |
|
| 417 |
+
| 0.3786 | 49000 | 0.0005 |
|
| 418 |
+
| 0.3824 | 49500 | 0.0005 |
|
| 419 |
+
| 0.3863 | 50000 | 0.0005 |
|
| 420 |
+
| 0.3902 | 50500 | 0.0005 |
|
| 421 |
+
| 0.3940 | 51000 | 0.0005 |
|
| 422 |
+
| 0.3979 | 51500 | 0.0005 |
|
| 423 |
+
| 0.4017 | 52000 | 0.0005 |
|
| 424 |
+
| 0.4056 | 52500 | 0.0005 |
|
| 425 |
+
| 0.4095 | 53000 | 0.0005 |
|
| 426 |
+
| 0.4133 | 53500 | 0.0005 |
|
| 427 |
+
| 0.4172 | 54000 | 0.0005 |
|
| 428 |
+
| 0.4211 | 54500 | 0.0005 |
|
| 429 |
+
| 0.4249 | 55000 | 0.0005 |
|
| 430 |
+
| 0.4288 | 55500 | 0.0005 |
|
| 431 |
+
| 0.4326 | 56000 | 0.0005 |
|
| 432 |
+
| 0.4365 | 56500 | 0.0005 |
|
| 433 |
+
| 0.4404 | 57000 | 0.0005 |
|
| 434 |
+
| 0.4442 | 57500 | 0.0005 |
|
| 435 |
+
| 0.4481 | 58000 | 0.0005 |
|
| 436 |
+
| 0.4520 | 58500 | 0.0005 |
|
| 437 |
+
| 0.4558 | 59000 | 0.0005 |
|
| 438 |
+
| 0.4597 | 59500 | 0.0005 |
|
| 439 |
+
| 0.4635 | 60000 | 0.0005 |
|
| 440 |
+
| 0.4674 | 60500 | 0.0005 |
|
| 441 |
+
| 0.4713 | 61000 | 0.0005 |
|
| 442 |
+
| 0.4751 | 61500 | 0.0005 |
|
| 443 |
+
| 0.4790 | 62000 | 0.0005 |
|
| 444 |
+
| 0.4829 | 62500 | 0.0005 |
|
| 445 |
+
| 0.4867 | 63000 | 0.0005 |
|
| 446 |
+
| 0.4906 | 63500 | 0.0005 |
|
| 447 |
+
| 0.4944 | 64000 | 0.0005 |
|
| 448 |
+
| 0.4983 | 64500 | 0.0005 |
|
| 449 |
+
| 0.5022 | 65000 | 0.0005 |
|
| 450 |
+
| 0.5060 | 65500 | 0.0004 |
|
| 451 |
+
| 0.5099 | 66000 | 0.0004 |
|
| 452 |
+
| 0.5138 | 66500 | 0.0004 |
|
| 453 |
+
| 0.5176 | 67000 | 0.0004 |
|
| 454 |
+
| 0.5215 | 67500 | 0.0004 |
|
| 455 |
+
| 0.5254 | 68000 | 0.0004 |
|
| 456 |
+
| 0.5292 | 68500 | 0.0004 |
|
| 457 |
+
| 0.5331 | 69000 | 0.0004 |
|
| 458 |
+
| 0.5369 | 69500 | 0.0004 |
|
| 459 |
+
| 0.5408 | 70000 | 0.0004 |
|
| 460 |
+
| 0.5447 | 70500 | 0.0004 |
|
| 461 |
+
| 0.5485 | 71000 | 0.0004 |
|
| 462 |
+
| 0.5524 | 71500 | 0.0004 |
|
| 463 |
+
| 0.5563 | 72000 | 0.0004 |
|
| 464 |
+
| 0.5601 | 72500 | 0.0004 |
|
| 465 |
+
| 0.5640 | 73000 | 0.0004 |
|
| 466 |
+
| 0.5678 | 73500 | 0.0004 |
|
| 467 |
+
| 0.5717 | 74000 | 0.0004 |
|
| 468 |
+
| 0.5756 | 74500 | 0.0004 |
|
| 469 |
+
| 0.5794 | 75000 | 0.0004 |
|
| 470 |
+
| 0.5833 | 75500 | 0.0004 |
|
| 471 |
+
| 0.5872 | 76000 | 0.0004 |
|
| 472 |
+
| 0.5910 | 76500 | 0.0004 |
|
| 473 |
+
| 0.5949 | 77000 | 0.0004 |
|
| 474 |
+
| 0.5987 | 77500 | 0.0004 |
|
| 475 |
+
| 0.6026 | 78000 | 0.0004 |
|
| 476 |
+
| 0.6065 | 78500 | 0.0004 |
|
| 477 |
+
| 0.6103 | 79000 | 0.0004 |
|
| 478 |
+
| 0.6142 | 79500 | 0.0004 |
|
| 479 |
+
| 0.6181 | 80000 | 0.0004 |
|
| 480 |
+
| 0.6219 | 80500 | 0.0004 |
|
| 481 |
+
| 0.6258 | 81000 | 0.0004 |
|
| 482 |
+
| 0.6296 | 81500 | 0.0004 |
|
| 483 |
+
| 0.6335 | 82000 | 0.0004 |
|
| 484 |
+
| 0.6374 | 82500 | 0.0004 |
|
| 485 |
+
| 0.6412 | 83000 | 0.0004 |
|
| 486 |
+
| 0.6451 | 83500 | 0.0004 |
|
| 487 |
+
| 0.6490 | 84000 | 0.0004 |
|
| 488 |
+
| 0.6528 | 84500 | 0.0004 |
|
| 489 |
+
| 0.6567 | 85000 | 0.0004 |
|
| 490 |
+
| 0.6606 | 85500 | 0.0004 |
|
| 491 |
+
| 0.6644 | 86000 | 0.0004 |
|
| 492 |
+
| 0.6683 | 86500 | 0.0004 |
|
| 493 |
+
| 0.6721 | 87000 | 0.0004 |
|
| 494 |
+
| 0.6760 | 87500 | 0.0004 |
|
| 495 |
+
| 0.6799 | 88000 | 0.0004 |
|
| 496 |
+
| 0.6837 | 88500 | 0.0004 |
|
| 497 |
+
| 0.6876 | 89000 | 0.0004 |
|
| 498 |
+
| 0.6915 | 89500 | 0.0004 |
|
| 499 |
+
| 0.6953 | 90000 | 0.0004 |
|
| 500 |
+
| 0.6992 | 90500 | 0.0004 |
|
| 501 |
+
| 0.7030 | 91000 | 0.0004 |
|
| 502 |
+
| 0.7069 | 91500 | 0.0004 |
|
| 503 |
+
| 0.7108 | 92000 | 0.0004 |
|
| 504 |
+
| 0.7146 | 92500 | 0.0004 |
|
| 505 |
+
| 0.7185 | 93000 | 0.0004 |
|
| 506 |
+
| 0.7224 | 93500 | 0.0004 |
|
| 507 |
+
| 0.7262 | 94000 | 0.0004 |
|
| 508 |
+
| 0.7301 | 94500 | 0.0004 |
|
| 509 |
+
| 0.7339 | 95000 | 0.0004 |
|
| 510 |
+
| 0.7378 | 95500 | 0.0004 |
|
| 511 |
+
| 0.7417 | 96000 | 0.0004 |
|
| 512 |
+
| 0.7455 | 96500 | 0.0004 |
|
| 513 |
+
| 0.7494 | 97000 | 0.0004 |
|
| 514 |
+
| 0.7533 | 97500 | 0.0004 |
|
| 515 |
+
| 0.7571 | 98000 | 0.0004 |
|
| 516 |
+
| 0.7610 | 98500 | 0.0004 |
|
| 517 |
+
| 0.7649 | 99000 | 0.0004 |
|
| 518 |
+
| 0.7687 | 99500 | 0.0004 |
|
| 519 |
+
| 0.7726 | 100000 | 0.0004 |
|
| 520 |
+
| 0.7764 | 100500 | 0.0004 |
|
| 521 |
+
| 0.7803 | 101000 | 0.0004 |
|
| 522 |
+
| 0.7842 | 101500 | 0.0004 |
|
| 523 |
+
| 0.7880 | 102000 | 0.0004 |
|
| 524 |
+
| 0.7919 | 102500 | 0.0004 |
|
| 525 |
+
| 0.7958 | 103000 | 0.0004 |
|
| 526 |
+
| 0.7996 | 103500 | 0.0004 |
|
| 527 |
+
| 0.8035 | 104000 | 0.0004 |
|
| 528 |
+
| 0.8073 | 104500 | 0.0004 |
|
| 529 |
+
| 0.8112 | 105000 | 0.0004 |
|
| 530 |
+
| 0.8151 | 105500 | 0.0004 |
|
| 531 |
+
| 0.8189 | 106000 | 0.0004 |
|
| 532 |
+
| 0.8228 | 106500 | 0.0004 |
|
| 533 |
+
| 0.8267 | 107000 | 0.0004 |
|
| 534 |
+
| 0.8305 | 107500 | 0.0004 |
|
| 535 |
+
| 0.8344 | 108000 | 0.0004 |
|
| 536 |
+
| 0.8382 | 108500 | 0.0004 |
|
| 537 |
+
| 0.8421 | 109000 | 0.0004 |
|
| 538 |
+
| 0.8460 | 109500 | 0.0004 |
|
| 539 |
+
| 0.8498 | 110000 | 0.0004 |
|
| 540 |
+
| 0.8537 | 110500 | 0.0004 |
|
| 541 |
+
| 0.8576 | 111000 | 0.0004 |
|
| 542 |
+
| 0.8614 | 111500 | 0.0004 |
|
| 543 |
+
| 0.8653 | 112000 | 0.0004 |
|
| 544 |
+
| 0.8691 | 112500 | 0.0004 |
|
| 545 |
+
| 0.8730 | 113000 | 0.0004 |
|
| 546 |
+
| 0.8769 | 113500 | 0.0004 |
|
| 547 |
+
| 0.8807 | 114000 | 0.0004 |
|
| 548 |
+
| 0.8846 | 114500 | 0.0004 |
|
| 549 |
+
| 0.8885 | 115000 | 0.0004 |
|
| 550 |
+
| 0.8923 | 115500 | 0.0004 |
|
| 551 |
+
| 0.8962 | 116000 | 0.0004 |
|
| 552 |
+
| 0.9001 | 116500 | 0.0004 |
|
| 553 |
+
| 0.9039 | 117000 | 0.0004 |
|
| 554 |
+
| 0.9078 | 117500 | 0.0004 |
|
| 555 |
+
| 0.9116 | 118000 | 0.0004 |
|
| 556 |
+
| 0.9155 | 118500 | 0.0004 |
|
| 557 |
+
| 0.9194 | 119000 | 0.0004 |
|
| 558 |
+
| 0.9232 | 119500 | 0.0004 |
|
| 559 |
+
| 0.9271 | 120000 | 0.0004 |
|
| 560 |
+
| 0.9310 | 120500 | 0.0004 |
|
| 561 |
+
| 0.9348 | 121000 | 0.0004 |
|
| 562 |
+
| 0.9387 | 121500 | 0.0004 |
|
| 563 |
+
| 0.9425 | 122000 | 0.0004 |
|
| 564 |
+
| 0.9464 | 122500 | 0.0004 |
|
| 565 |
+
| 0.9503 | 123000 | 0.0004 |
|
| 566 |
+
| 0.9541 | 123500 | 0.0004 |
|
| 567 |
+
| 0.9580 | 124000 | 0.0004 |
|
| 568 |
+
| 0.9619 | 124500 | 0.0004 |
|
| 569 |
+
| 0.9657 | 125000 | 0.0004 |
|
| 570 |
+
| 0.9696 | 125500 | 0.0004 |
|
| 571 |
+
| 0.9734 | 126000 | 0.0004 |
|
| 572 |
+
| 0.9773 | 126500 | 0.0004 |
|
| 573 |
+
| 0.9812 | 127000 | 0.0004 |
|
| 574 |
+
| 0.9850 | 127500 | 0.0004 |
|
| 575 |
+
| 0.9889 | 128000 | 0.0004 |
|
| 576 |
+
| 0.9928 | 128500 | 0.0004 |
|
| 577 |
+
| 0.9966 | 129000 | 0.0004 |
|
| 578 |
+
| 1.0005 | 129500 | 0.0004 |
|
| 579 |
+
| 1.0043 | 130000 | 0.0004 |
|
| 580 |
+
| 1.0082 | 130500 | 0.0004 |
|
| 581 |
+
| 1.0121 | 131000 | 0.0004 |
|
| 582 |
+
| 1.0159 | 131500 | 0.0004 |
|
| 583 |
+
| 1.0198 | 132000 | 0.0004 |
|
| 584 |
+
| 1.0237 | 132500 | 0.0004 |
|
| 585 |
+
| 1.0275 | 133000 | 0.0004 |
|
| 586 |
+
| 1.0314 | 133500 | 0.0004 |
|
| 587 |
+
| 1.0353 | 134000 | 0.0004 |
|
| 588 |
+
| 1.0391 | 134500 | 0.0004 |
|
| 589 |
+
| 1.0430 | 135000 | 0.0004 |
|
| 590 |
+
| 1.0468 | 135500 | 0.0004 |
|
| 591 |
+
| 1.0507 | 136000 | 0.0004 |
|
| 592 |
+
| 1.0546 | 136500 | 0.0004 |
|
| 593 |
+
| 1.0584 | 137000 | 0.0004 |
|
| 594 |
+
| 1.0623 | 137500 | 0.0004 |
|
| 595 |
+
| 1.0662 | 138000 | 0.0004 |
|
| 596 |
+
| 1.0700 | 138500 | 0.0004 |
|
| 597 |
+
| 1.0739 | 139000 | 0.0004 |
|
| 598 |
+
| 1.0777 | 139500 | 0.0004 |
|
| 599 |
+
| 1.0816 | 140000 | 0.0004 |
|
| 600 |
+
| 1.0855 | 140500 | 0.0004 |
|
| 601 |
+
| 1.0893 | 141000 | 0.0004 |
|
| 602 |
+
| 1.0932 | 141500 | 0.0004 |
|
| 603 |
+
| 1.0971 | 142000 | 0.0004 |
|
| 604 |
+
| 1.1009 | 142500 | 0.0004 |
|
| 605 |
+
| 1.1048 | 143000 | 0.0004 |
|
| 606 |
+
| 1.1086 | 143500 | 0.0004 |
|
| 607 |
+
| 1.1125 | 144000 | 0.0004 |
|
| 608 |
+
| 1.1164 | 144500 | 0.0004 |
|
| 609 |
+
| 1.1202 | 145000 | 0.0004 |
|
| 610 |
+
| 1.1241 | 145500 | 0.0004 |
|
| 611 |
+
| 1.1280 | 146000 | 0.0004 |
|
| 612 |
+
| 1.1318 | 146500 | 0.0004 |
|
| 613 |
+
| 1.1357 | 147000 | 0.0004 |
|
| 614 |
+
| 1.1396 | 147500 | 0.0004 |
|
| 615 |
+
| 1.1434 | 148000 | 0.0004 |
|
| 616 |
+
| 1.1473 | 148500 | 0.0004 |
|
| 617 |
+
| 1.1511 | 149000 | 0.0004 |
|
| 618 |
+
| 1.1550 | 149500 | 0.0004 |
|
| 619 |
+
| 1.1589 | 150000 | 0.0004 |
|
| 620 |
+
| 1.1627 | 150500 | 0.0004 |
|
| 621 |
+
| 1.1666 | 151000 | 0.0004 |
|
| 622 |
+
| 1.1705 | 151500 | 0.0004 |
|
| 623 |
+
| 1.1743 | 152000 | 0.0004 |
|
| 624 |
+
| 1.1782 | 152500 | 0.0004 |
|
| 625 |
+
| 1.1820 | 153000 | 0.0004 |
|
| 626 |
+
| 1.1859 | 153500 | 0.0004 |
|
| 627 |
+
| 1.1898 | 154000 | 0.0004 |
|
| 628 |
+
| 1.1936 | 154500 | 0.0004 |
|
| 629 |
+
| 1.1975 | 155000 | 0.0004 |
|
| 630 |
+
| 1.2014 | 155500 | 0.0003 |
|
| 631 |
+
| 1.2052 | 156000 | 0.0003 |
|
| 632 |
+
| 1.2091 | 156500 | 0.0004 |
|
| 633 |
+
| 1.2129 | 157000 | 0.0003 |
|
| 634 |
+
| 1.2168 | 157500 | 0.0004 |
|
| 635 |
+
| 1.2207 | 158000 | 0.0003 |
|
| 636 |
+
| 1.2245 | 158500 | 0.0003 |
|
| 637 |
+
| 1.2284 | 159000 | 0.0003 |
|
| 638 |
+
| 1.2323 | 159500 | 0.0003 |
|
| 639 |
+
| 1.2361 | 160000 | 0.0003 |
|
| 640 |
+
| 1.2400 | 160500 | 0.0003 |
|
| 641 |
+
| 1.2438 | 161000 | 0.0003 |
|
| 642 |
+
| 1.2477 | 161500 | 0.0003 |
|
| 643 |
+
| 1.2516 | 162000 | 0.0003 |
|
| 644 |
+
| 1.2554 | 162500 | 0.0003 |
|
| 645 |
+
| 1.2593 | 163000 | 0.0003 |
|
| 646 |
+
| 1.2632 | 163500 | 0.0003 |
|
| 647 |
+
| 1.2670 | 164000 | 0.0003 |
|
| 648 |
+
| 1.2709 | 164500 | 0.0003 |
|
| 649 |
+
| 1.2748 | 165000 | 0.0003 |
|
| 650 |
+
| 1.2786 | 165500 | 0.0003 |
|
| 651 |
+
| 1.2825 | 166000 | 0.0003 |
|
| 652 |
+
| 1.2863 | 166500 | 0.0003 |
|
| 653 |
+
| 1.2902 | 167000 | 0.0003 |
|
| 654 |
+
| 1.2941 | 167500 | 0.0003 |
|
| 655 |
+
| 1.2979 | 168000 | 0.0003 |
|
| 656 |
+
| 1.3018 | 168500 | 0.0003 |
|
| 657 |
+
| 1.3057 | 169000 | 0.0003 |
|
| 658 |
+
| 1.3095 | 169500 | 0.0003 |
|
| 659 |
+
| 1.3134 | 170000 | 0.0003 |
|
| 660 |
+
| 1.3172 | 170500 | 0.0003 |
|
| 661 |
+
| 1.3211 | 171000 | 0.0003 |
|
| 662 |
+
| 1.3250 | 171500 | 0.0003 |
|
| 663 |
+
| 1.3288 | 172000 | 0.0003 |
|
| 664 |
+
| 1.3327 | 172500 | 0.0003 |
|
| 665 |
+
| 1.3366 | 173000 | 0.0003 |
|
| 666 |
+
| 1.3404 | 173500 | 0.0003 |
|
| 667 |
+
| 1.3443 | 174000 | 0.0003 |
|
| 668 |
+
| 1.3481 | 174500 | 0.0003 |
|
| 669 |
+
| 1.3520 | 175000 | 0.0003 |
|
| 670 |
+
| 1.3559 | 175500 | 0.0003 |
|
| 671 |
+
| 1.3597 | 176000 | 0.0003 |
|
| 672 |
+
| 1.3636 | 176500 | 0.0003 |
|
| 673 |
+
| 1.3675 | 177000 | 0.0003 |
|
| 674 |
+
| 1.3713 | 177500 | 0.0003 |
|
| 675 |
+
| 1.3752 | 178000 | 0.0003 |
|
| 676 |
+
| 1.3790 | 178500 | 0.0003 |
|
| 677 |
+
| 1.3829 | 179000 | 0.0003 |
|
| 678 |
+
| 1.3868 | 179500 | 0.0003 |
|
| 679 |
+
| 1.3906 | 180000 | 0.0003 |
|
| 680 |
+
| 1.3945 | 180500 | 0.0003 |
|
| 681 |
+
| 1.3984 | 181000 | 0.0003 |
|
| 682 |
+
| 1.4022 | 181500 | 0.0003 |
|
| 683 |
+
| 1.4061 | 182000 | 0.0003 |
|
| 684 |
+
| 1.4100 | 182500 | 0.0003 |
|
| 685 |
+
| 1.4138 | 183000 | 0.0003 |
|
| 686 |
+
| 1.4177 | 183500 | 0.0003 |
|
| 687 |
+
| 1.4215 | 184000 | 0.0003 |
|
| 688 |
+
| 1.4254 | 184500 | 0.0003 |
|
| 689 |
+
| 1.4293 | 185000 | 0.0003 |
|
| 690 |
+
| 1.4331 | 185500 | 0.0003 |
|
| 691 |
+
| 1.4370 | 186000 | 0.0003 |
|
| 692 |
+
| 1.4409 | 186500 | 0.0003 |
|
| 693 |
+
| 1.4447 | 187000 | 0.0003 |
|
| 694 |
+
| 1.4486 | 187500 | 0.0003 |
|
| 695 |
+
| 1.4524 | 188000 | 0.0003 |
|
| 696 |
+
| 1.4563 | 188500 | 0.0003 |
|
| 697 |
+
| 1.4602 | 189000 | 0.0003 |
|
| 698 |
+
| 1.4640 | 189500 | 0.0003 |
|
| 699 |
+
| 1.4679 | 190000 | 0.0003 |
|
| 700 |
+
| 1.4718 | 190500 | 0.0003 |
|
| 701 |
+
| 1.4756 | 191000 | 0.0003 |
|
| 702 |
+
| 1.4795 | 191500 | 0.0003 |
|
| 703 |
+
| 1.4833 | 192000 | 0.0003 |
|
| 704 |
+
| 1.4872 | 192500 | 0.0003 |
|
| 705 |
+
| 1.4911 | 193000 | 0.0003 |
|
| 706 |
+
| 1.4949 | 193500 | 0.0003 |
|
| 707 |
+
| 1.4988 | 194000 | 0.0003 |
|
| 708 |
+
| 1.5027 | 194500 | 0.0003 |
|
| 709 |
+
| 1.5065 | 195000 | 0.0003 |
|
| 710 |
+
| 1.5104 | 195500 | 0.0003 |
|
| 711 |
+
| 1.5143 | 196000 | 0.0003 |
|
| 712 |
+
| 1.5181 | 196500 | 0.0003 |
|
| 713 |
+
| 1.5220 | 197000 | 0.0003 |
|
| 714 |
+
| 1.5258 | 197500 | 0.0003 |
|
| 715 |
+
| 1.5297 | 198000 | 0.0003 |
|
| 716 |
+
| 1.5336 | 198500 | 0.0003 |
|
| 717 |
+
| 1.5374 | 199000 | 0.0003 |
|
| 718 |
+
| 1.5413 | 199500 | 0.0003 |
|
| 719 |
+
| 1.5452 | 200000 | 0.0003 |
|
| 720 |
+
| 1.5490 | 200500 | 0.0003 |
|
| 721 |
+
| 1.5529 | 201000 | 0.0003 |
|
| 722 |
+
| 1.5567 | 201500 | 0.0003 |
|
| 723 |
+
| 1.5606 | 202000 | 0.0003 |
|
| 724 |
+
| 1.5645 | 202500 | 0.0003 |
|
| 725 |
+
| 1.5683 | 203000 | 0.0003 |
|
| 726 |
+
| 1.5722 | 203500 | 0.0003 |
|
| 727 |
+
| 1.5761 | 204000 | 0.0003 |
|
| 728 |
+
| 1.5799 | 204500 | 0.0003 |
|
| 729 |
+
| 1.5838 | 205000 | 0.0003 |
|
| 730 |
+
| 1.5876 | 205500 | 0.0003 |
|
| 731 |
+
| 1.5915 | 206000 | 0.0003 |
|
| 732 |
+
| 1.5954 | 206500 | 0.0003 |
|
| 733 |
+
| 1.5992 | 207000 | 0.0003 |
|
| 734 |
+
| 1.6031 | 207500 | 0.0003 |
|
| 735 |
+
| 1.6070 | 208000 | 0.0003 |
|
| 736 |
+
| 1.6108 | 208500 | 0.0003 |
|
| 737 |
+
| 1.6147 | 209000 | 0.0003 |
|
| 738 |
+
| 1.6185 | 209500 | 0.0003 |
|
| 739 |
+
| 1.6224 | 210000 | 0.0003 |
|
| 740 |
+
| 1.6263 | 210500 | 0.0003 |
|
| 741 |
+
| 1.6301 | 211000 | 0.0003 |
|
| 742 |
+
| 1.6340 | 211500 | 0.0003 |
|
| 743 |
+
| 1.6379 | 212000 | 0.0003 |
|
| 744 |
+
| 1.6417 | 212500 | 0.0003 |
|
| 745 |
+
| 1.6456 | 213000 | 0.0003 |
|
| 746 |
+
| 1.6495 | 213500 | 0.0003 |
|
| 747 |
+
| 1.6533 | 214000 | 0.0003 |
|
| 748 |
+
| 1.6572 | 214500 | 0.0003 |
|
| 749 |
+
| 1.6610 | 215000 | 0.0003 |
|
| 750 |
+
| 1.6649 | 215500 | 0.0003 |
|
| 751 |
+
| 1.6688 | 216000 | 0.0003 |
|
| 752 |
+
| 1.6726 | 216500 | 0.0003 |
|
| 753 |
+
| 1.6765 | 217000 | 0.0003 |
|
| 754 |
+
| 1.6804 | 217500 | 0.0003 |
|
| 755 |
+
| 1.6842 | 218000 | 0.0003 |
|
| 756 |
+
| 1.6881 | 218500 | 0.0003 |
|
| 757 |
+
| 1.6919 | 219000 | 0.0003 |
|
| 758 |
+
| 1.6958 | 219500 | 0.0003 |
|
| 759 |
+
| 1.6997 | 220000 | 0.0003 |
|
| 760 |
+
| 1.7035 | 220500 | 0.0003 |
|
| 761 |
+
| 1.7074 | 221000 | 0.0003 |
|
| 762 |
+
| 1.7113 | 221500 | 0.0003 |
|
| 763 |
+
| 1.7151 | 222000 | 0.0003 |
|
| 764 |
+
| 1.7190 | 222500 | 0.0003 |
|
| 765 |
+
| 1.7228 | 223000 | 0.0003 |
|
| 766 |
+
| 1.7267 | 223500 | 0.0003 |
|
| 767 |
+
| 1.7306 | 224000 | 0.0003 |
|
| 768 |
+
| 1.7344 | 224500 | 0.0003 |
|
| 769 |
+
| 1.7383 | 225000 | 0.0003 |
|
| 770 |
+
| 1.7422 | 225500 | 0.0003 |
|
| 771 |
+
| 1.7460 | 226000 | 0.0003 |
|
| 772 |
+
| 1.7499 | 226500 | 0.0003 |
|
| 773 |
+
| 1.7537 | 227000 | 0.0003 |
|
| 774 |
+
| 1.7576 | 227500 | 0.0003 |
|
| 775 |
+
| 1.7615 | 228000 | 0.0003 |
|
| 776 |
+
| 1.7653 | 228500 | 0.0003 |
|
| 777 |
+
| 1.7692 | 229000 | 0.0003 |
|
| 778 |
+
| 1.7731 | 229500 | 0.0003 |
|
| 779 |
+
| 1.7769 | 230000 | 0.0003 |
|
| 780 |
+
| 1.7808 | 230500 | 0.0003 |
|
| 781 |
+
| 1.7847 | 231000 | 0.0003 |
|
| 782 |
+
| 1.7885 | 231500 | 0.0003 |
|
| 783 |
+
| 1.7924 | 232000 | 0.0003 |
|
| 784 |
+
| 1.7962 | 232500 | 0.0003 |
|
| 785 |
+
| 1.8001 | 233000 | 0.0003 |
|
| 786 |
+
| 1.8040 | 233500 | 0.0003 |
|
| 787 |
+
| 1.8078 | 234000 | 0.0003 |
|
| 788 |
+
| 1.8117 | 234500 | 0.0003 |
|
| 789 |
+
| 1.8156 | 235000 | 0.0003 |
|
| 790 |
+
| 1.8194 | 235500 | 0.0003 |
|
| 791 |
+
| 1.8233 | 236000 | 0.0003 |
|
| 792 |
+
| 1.8271 | 236500 | 0.0003 |
|
| 793 |
+
| 1.8310 | 237000 | 0.0003 |
|
| 794 |
+
| 1.8349 | 237500 | 0.0003 |
|
| 795 |
+
| 1.8387 | 238000 | 0.0003 |
|
| 796 |
+
| 1.8426 | 238500 | 0.0003 |
|
| 797 |
+
| 1.8465 | 239000 | 0.0003 |
|
| 798 |
+
| 1.8503 | 239500 | 0.0003 |
|
| 799 |
+
| 1.8542 | 240000 | 0.0003 |
|
| 800 |
+
| 1.8580 | 240500 | 0.0003 |
|
| 801 |
+
| 1.8619 | 241000 | 0.0003 |
|
| 802 |
+
| 1.8658 | 241500 | 0.0003 |
|
| 803 |
+
| 1.8696 | 242000 | 0.0003 |
|
| 804 |
+
| 1.8735 | 242500 | 0.0003 |
|
| 805 |
+
| 1.8774 | 243000 | 0.0003 |
|
| 806 |
+
| 1.8812 | 243500 | 0.0003 |
|
| 807 |
+
| 1.8851 | 244000 | 0.0003 |
|
| 808 |
+
| 1.8889 | 244500 | 0.0003 |
|
| 809 |
+
| 1.8928 | 245000 | 0.0003 |
|
| 810 |
+
| 1.8967 | 245500 | 0.0003 |
|
| 811 |
+
| 1.9005 | 246000 | 0.0003 |
|
| 812 |
+
| 1.9044 | 246500 | 0.0003 |
|
| 813 |
+
| 1.9083 | 247000 | 0.0003 |
|
| 814 |
+
| 1.9121 | 247500 | 0.0003 |
|
| 815 |
+
| 1.9160 | 248000 | 0.0003 |
|
| 816 |
+
| 1.9199 | 248500 | 0.0003 |
|
| 817 |
+
| 1.9237 | 249000 | 0.0003 |
|
| 818 |
+
| 1.9276 | 249500 | 0.0003 |
|
| 819 |
+
| 1.9314 | 250000 | 0.0003 |
|
| 820 |
+
| 1.9353 | 250500 | 0.0003 |
|
| 821 |
+
| 1.9392 | 251000 | 0.0003 |
|
| 822 |
+
| 1.9430 | 251500 | 0.0003 |
|
| 823 |
+
| 1.9469 | 252000 | 0.0003 |
|
| 824 |
+
| 1.9508 | 252500 | 0.0003 |
|
| 825 |
+
| 1.9546 | 253000 | 0.0003 |
|
| 826 |
+
| 1.9585 | 253500 | 0.0003 |
|
| 827 |
+
| 1.9623 | 254000 | 0.0003 |
|
| 828 |
+
| 1.9662 | 254500 | 0.0003 |
|
| 829 |
+
| 1.9701 | 255000 | 0.0003 |
|
| 830 |
+
| 1.9739 | 255500 | 0.0003 |
|
| 831 |
+
| 1.9778 | 256000 | 0.0003 |
|
| 832 |
+
| 1.9817 | 256500 | 0.0003 |
|
| 833 |
+
| 1.9855 | 257000 | 0.0003 |
|
| 834 |
+
| 1.9894 | 257500 | 0.0003 |
|
| 835 |
+
| 1.9932 | 258000 | 0.0003 |
|
| 836 |
+
| 1.9971 | 258500 | 0.0003 |
|
| 837 |
+
| 2.0010 | 259000 | 0.0003 |
|
| 838 |
+
| 2.0048 | 259500 | 0.0003 |
|
| 839 |
+
| 2.0087 | 260000 | 0.0003 |
|
| 840 |
+
| 2.0126 | 260500 | 0.0003 |
|
| 841 |
+
| 2.0164 | 261000 | 0.0003 |
|
| 842 |
+
| 2.0203 | 261500 | 0.0003 |
|
| 843 |
+
| 2.0242 | 262000 | 0.0003 |
|
| 844 |
+
| 2.0280 | 262500 | 0.0003 |
|
| 845 |
+
| 2.0319 | 263000 | 0.0003 |
|
| 846 |
+
| 2.0357 | 263500 | 0.0003 |
|
| 847 |
+
| 2.0396 | 264000 | 0.0003 |
|
| 848 |
+
| 2.0435 | 264500 | 0.0003 |
|
| 849 |
+
| 2.0473 | 265000 | 0.0003 |
|
| 850 |
+
| 2.0512 | 265500 | 0.0003 |
|
| 851 |
+
| 2.0551 | 266000 | 0.0003 |
|
| 852 |
+
| 2.0589 | 266500 | 0.0003 |
|
| 853 |
+
| 2.0628 | 267000 | 0.0003 |
|
| 854 |
+
| 2.0666 | 267500 | 0.0003 |
|
| 855 |
+
| 2.0705 | 268000 | 0.0003 |
|
| 856 |
+
| 2.0744 | 268500 | 0.0003 |
|
| 857 |
+
| 2.0782 | 269000 | 0.0003 |
|
| 858 |
+
| 2.0821 | 269500 | 0.0003 |
|
| 859 |
+
| 2.0860 | 270000 | 0.0003 |
|
| 860 |
+
| 2.0898 | 270500 | 0.0003 |
|
| 861 |
+
| 2.0937 | 271000 | 0.0003 |
|
| 862 |
+
| 2.0975 | 271500 | 0.0003 |
|
| 863 |
+
| 2.1014 | 272000 | 0.0003 |
|
| 864 |
+
| 2.1053 | 272500 | 0.0003 |
|
| 865 |
+
| 2.1091 | 273000 | 0.0003 |
|
| 866 |
+
| 2.1130 | 273500 | 0.0003 |
|
| 867 |
+
| 2.1169 | 274000 | 0.0003 |
|
| 868 |
+
| 2.1207 | 274500 | 0.0003 |
|
| 869 |
+
| 2.1246 | 275000 | 0.0003 |
|
| 870 |
+
| 2.1284 | 275500 | 0.0003 |
|
| 871 |
+
| 2.1323 | 276000 | 0.0003 |
|
| 872 |
+
| 2.1362 | 276500 | 0.0003 |
|
| 873 |
+
| 2.1400 | 277000 | 0.0003 |
|
| 874 |
+
| 2.1439 | 277500 | 0.0003 |
|
| 875 |
+
| 2.1478 | 278000 | 0.0003 |
|
| 876 |
+
| 2.1516 | 278500 | 0.0003 |
|
| 877 |
+
| 2.1555 | 279000 | 0.0003 |
|
| 878 |
+
| 2.1594 | 279500 | 0.0003 |
|
| 879 |
+
| 2.1632 | 280000 | 0.0003 |
|
| 880 |
+
| 2.1671 | 280500 | 0.0003 |
|
| 881 |
+
| 2.1709 | 281000 | 0.0003 |
|
| 882 |
+
| 2.1748 | 281500 | 0.0003 |
|
| 883 |
+
| 2.1787 | 282000 | 0.0003 |
|
| 884 |
+
| 2.1825 | 282500 | 0.0003 |
|
| 885 |
+
| 2.1864 | 283000 | 0.0003 |
|
| 886 |
+
| 2.1903 | 283500 | 0.0003 |
|
| 887 |
+
| 2.1941 | 284000 | 0.0003 |
|
| 888 |
+
| 2.1980 | 284500 | 0.0003 |
|
| 889 |
+
| 2.2018 | 285000 | 0.0003 |
|
| 890 |
+
| 2.2057 | 285500 | 0.0003 |
|
| 891 |
+
| 2.2096 | 286000 | 0.0003 |
|
| 892 |
+
| 2.2134 | 286500 | 0.0003 |
|
| 893 |
+
| 2.2173 | 287000 | 0.0003 |
|
| 894 |
+
| 2.2212 | 287500 | 0.0003 |
|
| 895 |
+
| 2.2250 | 288000 | 0.0003 |
|
| 896 |
+
| 2.2289 | 288500 | 0.0003 |
|
| 897 |
+
| 2.2327 | 289000 | 0.0003 |
|
| 898 |
+
| 2.2366 | 289500 | 0.0003 |
|
| 899 |
+
| 2.2405 | 290000 | 0.0003 |
|
| 900 |
+
| 2.2443 | 290500 | 0.0003 |
|
| 901 |
+
| 2.2482 | 291000 | 0.0003 |
|
| 902 |
+
| 2.2521 | 291500 | 0.0003 |
|
| 903 |
+
| 2.2559 | 292000 | 0.0003 |
|
| 904 |
+
| 2.2598 | 292500 | 0.0003 |
|
| 905 |
+
| 2.2636 | 293000 | 0.0003 |
|
| 906 |
+
| 2.2675 | 293500 | 0.0003 |
|
| 907 |
+
| 2.2714 | 294000 | 0.0003 |
|
| 908 |
+
| 2.2752 | 294500 | 0.0003 |
|
| 909 |
+
| 2.2791 | 295000 | 0.0003 |
|
| 910 |
+
| 2.2830 | 295500 | 0.0003 |
|
| 911 |
+
| 2.2868 | 296000 | 0.0003 |
|
| 912 |
+
| 2.2907 | 296500 | 0.0003 |
|
| 913 |
+
| 2.2946 | 297000 | 0.0003 |
|
| 914 |
+
| 2.2984 | 297500 | 0.0003 |
|
| 915 |
+
| 2.3023 | 298000 | 0.0003 |
|
| 916 |
+
| 2.3061 | 298500 | 0.0003 |
|
| 917 |
+
| 2.3100 | 299000 | 0.0003 |
|
| 918 |
+
| 2.3139 | 299500 | 0.0003 |
|
| 919 |
+
| 2.3177 | 300000 | 0.0003 |
|
| 920 |
+
| 2.3216 | 300500 | 0.0003 |
|
| 921 |
+
| 2.3255 | 301000 | 0.0003 |
|
| 922 |
+
| 2.3293 | 301500 | 0.0003 |
|
| 923 |
+
| 2.3332 | 302000 | 0.0003 |
|
| 924 |
+
| 2.3370 | 302500 | 0.0003 |
|
| 925 |
+
| 2.3409 | 303000 | 0.0003 |
|
| 926 |
+
| 2.3448 | 303500 | 0.0003 |
|
| 927 |
+
| 2.3486 | 304000 | 0.0003 |
|
| 928 |
+
| 2.3525 | 304500 | 0.0003 |
|
| 929 |
+
| 2.3564 | 305000 | 0.0003 |
|
| 930 |
+
| 2.3602 | 305500 | 0.0003 |
|
| 931 |
+
| 2.3641 | 306000 | 0.0003 |
|
| 932 |
+
| 2.3679 | 306500 | 0.0003 |
|
| 933 |
+
| 2.3718 | 307000 | 0.0003 |
|
| 934 |
+
| 2.3757 | 307500 | 0.0003 |
|
| 935 |
+
| 2.3795 | 308000 | 0.0003 |
|
| 936 |
+
| 2.3834 | 308500 | 0.0003 |
|
| 937 |
+
| 2.3873 | 309000 | 0.0003 |
|
| 938 |
+
| 2.3911 | 309500 | 0.0003 |
|
| 939 |
+
| 2.3950 | 310000 | 0.0003 |
|
| 940 |
+
| 2.3989 | 310500 | 0.0003 |
|
| 941 |
+
| 2.4027 | 311000 | 0.0003 |
|
| 942 |
+
| 2.4066 | 311500 | 0.0003 |
|
| 943 |
+
| 2.4104 | 312000 | 0.0003 |
|
| 944 |
+
| 2.4143 | 312500 | 0.0003 |
|
| 945 |
+
| 2.4182 | 313000 | 0.0003 |
|
| 946 |
+
| 2.4220 | 313500 | 0.0003 |
|
| 947 |
+
| 2.4259 | 314000 | 0.0003 |
|
| 948 |
+
| 2.4298 | 314500 | 0.0003 |
|
| 949 |
+
| 2.4336 | 315000 | 0.0003 |
|
| 950 |
+
| 2.4375 | 315500 | 0.0003 |
|
| 951 |
+
| 2.4413 | 316000 | 0.0003 |
|
| 952 |
+
| 2.4452 | 316500 | 0.0003 |
|
| 953 |
+
| 2.4491 | 317000 | 0.0003 |
|
| 954 |
+
| 2.4529 | 317500 | 0.0003 |
|
| 955 |
+
| 2.4568 | 318000 | 0.0003 |
|
| 956 |
+
| 2.4607 | 318500 | 0.0003 |
|
| 957 |
+
| 2.4645 | 319000 | 0.0003 |
|
| 958 |
+
| 2.4684 | 319500 | 0.0003 |
|
| 959 |
+
| 2.4722 | 320000 | 0.0003 |
|
| 960 |
+
| 2.4761 | 320500 | 0.0003 |
|
| 961 |
+
| 2.4800 | 321000 | 0.0003 |
|
| 962 |
+
| 2.4838 | 321500 | 0.0003 |
|
| 963 |
+
| 2.4877 | 322000 | 0.0003 |
|
| 964 |
+
| 2.4916 | 322500 | 0.0003 |
|
| 965 |
+
| 2.4954 | 323000 | 0.0003 |
|
| 966 |
+
| 2.4993 | 323500 | 0.0003 |
|
| 967 |
+
| 2.5031 | 324000 | 0.0003 |
|
| 968 |
+
| 2.5070 | 324500 | 0.0003 |
|
| 969 |
+
| 2.5109 | 325000 | 0.0003 |
|
| 970 |
+
| 2.5147 | 325500 | 0.0003 |
|
| 971 |
+
| 2.5186 | 326000 | 0.0003 |
|
| 972 |
+
| 2.5225 | 326500 | 0.0003 |
|
| 973 |
+
| 2.5263 | 327000 | 0.0003 |
|
| 974 |
+
| 2.5302 | 327500 | 0.0003 |
|
| 975 |
+
| 2.5341 | 328000 | 0.0003 |
|
| 976 |
+
| 2.5379 | 328500 | 0.0003 |
|
| 977 |
+
| 2.5418 | 329000 | 0.0003 |
|
| 978 |
+
| 2.5456 | 329500 | 0.0003 |
|
| 979 |
+
| 2.5495 | 330000 | 0.0003 |
|
| 980 |
+
| 2.5534 | 330500 | 0.0003 |
|
| 981 |
+
| 2.5572 | 331000 | 0.0003 |
|
| 982 |
+
| 2.5611 | 331500 | 0.0003 |
|
| 983 |
+
| 2.5650 | 332000 | 0.0003 |
|
| 984 |
+
| 2.5688 | 332500 | 0.0003 |
|
| 985 |
+
| 2.5727 | 333000 | 0.0003 |
|
| 986 |
+
| 2.5765 | 333500 | 0.0003 |
|
| 987 |
+
| 2.5804 | 334000 | 0.0003 |
|
| 988 |
+
| 2.5843 | 334500 | 0.0003 |
|
| 989 |
+
| 2.5881 | 335000 | 0.0003 |
|
| 990 |
+
| 2.5920 | 335500 | 0.0003 |
|
| 991 |
+
| 2.5959 | 336000 | 0.0003 |
|
| 992 |
+
| 2.5997 | 336500 | 0.0003 |
|
| 993 |
+
| 2.6036 | 337000 | 0.0003 |
|
| 994 |
+
| 2.6074 | 337500 | 0.0003 |
|
| 995 |
+
| 2.6113 | 338000 | 0.0003 |
|
| 996 |
+
| 2.6152 | 338500 | 0.0003 |
|
| 997 |
+
| 2.6190 | 339000 | 0.0003 |
|
| 998 |
+
| 2.6229 | 339500 | 0.0003 |
|
| 999 |
+
| 2.6268 | 340000 | 0.0003 |
|
| 1000 |
+
| 2.6306 | 340500 | 0.0003 |
|
| 1001 |
+
| 2.6345 | 341000 | 0.0003 |
|
| 1002 |
+
| 2.6383 | 341500 | 0.0003 |
|
| 1003 |
+
| 2.6422 | 342000 | 0.0003 |
|
| 1004 |
+
| 2.6461 | 342500 | 0.0003 |
|
| 1005 |
+
| 2.6499 | 343000 | 0.0003 |
|
| 1006 |
+
| 2.6538 | 343500 | 0.0003 |
|
| 1007 |
+
| 2.6577 | 344000 | 0.0003 |
|
| 1008 |
+
| 2.6615 | 344500 | 0.0003 |
|
| 1009 |
+
| 2.6654 | 345000 | 0.0003 |
|
| 1010 |
+
| 2.6693 | 345500 | 0.0003 |
|
| 1011 |
+
| 2.6731 | 346000 | 0.0003 |
|
| 1012 |
+
| 2.6770 | 346500 | 0.0003 |
|
| 1013 |
+
| 2.6808 | 347000 | 0.0003 |
|
| 1014 |
+
| 2.6847 | 347500 | 0.0003 |
|
| 1015 |
+
| 2.6886 | 348000 | 0.0003 |
|
| 1016 |
+
| 2.6924 | 348500 | 0.0003 |
|
| 1017 |
+
| 2.6963 | 349000 | 0.0003 |
|
| 1018 |
+
| 2.7002 | 349500 | 0.0003 |
|
| 1019 |
+
| 2.7040 | 350000 | 0.0003 |
|
| 1020 |
+
| 2.7079 | 350500 | 0.0003 |
|
| 1021 |
+
| 2.7117 | 351000 | 0.0003 |
|
| 1022 |
+
| 2.7156 | 351500 | 0.0003 |
|
| 1023 |
+
| 2.7195 | 352000 | 0.0003 |
|
| 1024 |
+
| 2.7233 | 352500 | 0.0003 |
|
| 1025 |
+
| 2.7272 | 353000 | 0.0003 |
|
| 1026 |
+
| 2.7311 | 353500 | 0.0003 |
|
| 1027 |
+
| 2.7349 | 354000 | 0.0003 |
|
| 1028 |
+
| 2.7388 | 354500 | 0.0003 |
|
| 1029 |
+
| 2.7426 | 355000 | 0.0003 |
|
| 1030 |
+
| 2.7465 | 355500 | 0.0003 |
|
| 1031 |
+
| 2.7504 | 356000 | 0.0003 |
|
| 1032 |
+
| 2.7542 | 356500 | 0.0003 |
|
| 1033 |
+
| 2.7581 | 357000 | 0.0003 |
|
| 1034 |
+
| 2.7620 | 357500 | 0.0003 |
|
| 1035 |
+
| 2.7658 | 358000 | 0.0003 |
|
| 1036 |
+
| 2.7697 | 358500 | 0.0003 |
|
| 1037 |
+
| 2.7736 | 359000 | 0.0003 |
|
| 1038 |
+
| 2.7774 | 359500 | 0.0003 |
|
| 1039 |
+
| 2.7813 | 360000 | 0.0003 |
|
| 1040 |
+
| 2.7851 | 360500 | 0.0003 |
|
| 1041 |
+
| 2.7890 | 361000 | 0.0003 |
|
| 1042 |
+
| 2.7929 | 361500 | 0.0003 |
|
| 1043 |
+
| 2.7967 | 362000 | 0.0003 |
|
| 1044 |
+
| 2.8006 | 362500 | 0.0003 |
|
| 1045 |
+
| 2.8045 | 363000 | 0.0003 |
|
| 1046 |
+
| 2.8083 | 363500 | 0.0003 |
|
| 1047 |
+
| 2.8122 | 364000 | 0.0003 |
|
| 1048 |
+
| 2.8160 | 364500 | 0.0003 |
|
| 1049 |
+
| 2.8199 | 365000 | 0.0003 |
|
| 1050 |
+
| 2.8238 | 365500 | 0.0003 |
|
| 1051 |
+
| 2.8276 | 366000 | 0.0003 |
|
| 1052 |
+
| 2.8315 | 366500 | 0.0003 |
|
| 1053 |
+
| 2.8354 | 367000 | 0.0003 |
|
| 1054 |
+
| 2.8392 | 367500 | 0.0003 |
|
| 1055 |
+
| 2.8431 | 368000 | 0.0003 |
|
| 1056 |
+
| 2.8469 | 368500 | 0.0003 |
|
| 1057 |
+
| 2.8508 | 369000 | 0.0003 |
|
| 1058 |
+
| 2.8547 | 369500 | 0.0003 |
|
| 1059 |
+
| 2.8585 | 370000 | 0.0003 |
|
| 1060 |
+
| 2.8624 | 370500 | 0.0003 |
|
| 1061 |
+
| 2.8663 | 371000 | 0.0003 |
|
| 1062 |
+
| 2.8701 | 371500 | 0.0003 |
|
| 1063 |
+
| 2.8740 | 372000 | 0.0003 |
|
| 1064 |
+
| 2.8778 | 372500 | 0.0003 |
|
| 1065 |
+
| 2.8817 | 373000 | 0.0003 |
|
| 1066 |
+
| 2.8856 | 373500 | 0.0003 |
|
| 1067 |
+
| 2.8894 | 374000 | 0.0003 |
|
| 1068 |
+
| 2.8933 | 374500 | 0.0003 |
|
| 1069 |
+
| 2.8972 | 375000 | 0.0003 |
|
| 1070 |
+
| 2.9010 | 375500 | 0.0003 |
|
| 1071 |
+
| 2.9049 | 376000 | 0.0003 |
|
| 1072 |
+
| 2.9088 | 376500 | 0.0003 |
|
| 1073 |
+
| 2.9126 | 377000 | 0.0003 |
|
| 1074 |
+
| 2.9165 | 377500 | 0.0003 |
|
| 1075 |
+
| 2.9203 | 378000 | 0.0003 |
|
| 1076 |
+
| 2.9242 | 378500 | 0.0003 |
|
| 1077 |
+
| 2.9281 | 379000 | 0.0003 |
|
| 1078 |
+
| 2.9319 | 379500 | 0.0003 |
|
| 1079 |
+
| 2.9358 | 380000 | 0.0003 |
|
| 1080 |
+
| 2.9397 | 380500 | 0.0003 |
|
| 1081 |
+
| 2.9435 | 381000 | 0.0003 |
|
| 1082 |
+
| 2.9474 | 381500 | 0.0003 |
|
| 1083 |
+
| 2.9512 | 382000 | 0.0003 |
|
| 1084 |
+
| 2.9551 | 382500 | 0.0003 |
|
| 1085 |
+
| 2.9590 | 383000 | 0.0003 |
|
| 1086 |
+
| 2.9628 | 383500 | 0.0003 |
|
| 1087 |
+
| 2.9667 | 384000 | 0.0003 |
|
| 1088 |
+
| 2.9706 | 384500 | 0.0003 |
|
| 1089 |
+
| 2.9744 | 385000 | 0.0003 |
|
| 1090 |
+
| 2.9783 | 385500 | 0.0003 |
|
| 1091 |
+
| 2.9821 | 386000 | 0.0003 |
|
| 1092 |
+
| 2.9860 | 386500 | 0.0003 |
|
| 1093 |
+
| 2.9899 | 387000 | 0.0003 |
|
| 1094 |
+
| 2.9937 | 387500 | 0.0003 |
|
| 1095 |
+
| 2.9976 | 388000 | 0.0003 |
|
| 1096 |
+
|
| 1097 |
+
</details>
|
| 1098 |
+
|
| 1099 |
+
### Framework Versions
|
| 1100 |
+
- Python: 3.10.13
|
| 1101 |
+
- Sentence Transformers: 4.1.0
|
| 1102 |
+
- Transformers: 4.52.4
|
| 1103 |
+
- PyTorch: 2.5.1+cu121
|
| 1104 |
+
- Accelerate: 1.7.0
|
| 1105 |
+
- Datasets: 3.6.0
|
| 1106 |
+
- Tokenizers: 0.21.1
|
| 1107 |
+
|
| 1108 |
+
## Citation
|
| 1109 |
+
|
| 1110 |
+
### BibTeX
|
| 1111 |
+
|
| 1112 |
+
#### Sentence Transformers
|
| 1113 |
+
```bibtex
|
| 1114 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1115 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1116 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1117 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1118 |
+
month = "11",
|
| 1119 |
+
year = "2019",
|
| 1120 |
+
publisher = "Association for Computational Linguistics",
|
| 1121 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1122 |
+
}
|
| 1123 |
+
```
|
| 1124 |
+
|
| 1125 |
+
#### MSELoss
|
| 1126 |
+
```bibtex
|
| 1127 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
| 1128 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
| 1129 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1130 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
| 1131 |
+
month = "11",
|
| 1132 |
+
year = "2020",
|
| 1133 |
+
publisher = "Association for Computational Linguistics",
|
| 1134 |
+
url = "https://arxiv.org/abs/2004.09813",
|
| 1135 |
+
}
|
| 1136 |
+
```
|
| 1137 |
+
|
| 1138 |
+
<!--
|
| 1139 |
+
## Glossary
|
| 1140 |
+
|
| 1141 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1142 |
+
-->
|
| 1143 |
+
|
| 1144 |
+
<!--
|
| 1145 |
+
## Model Card Authors
|
| 1146 |
+
|
| 1147 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1148 |
+
-->
|
| 1149 |
+
|
| 1150 |
+
<!--
|
| 1151 |
+
## Model Card Contact
|
| 1152 |
+
|
| 1153 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1154 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"gradient_checkpointing": false,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 1536,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 6,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.52.4",
|
| 23 |
+
"type_vocab_size": 2,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 50001
|
| 26 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.52.4",
|
| 5 |
+
"pytorch": "2.5.1+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf6611d7d601f13dea2bf5ee52fe94318fccb3e80b28f622cbe7ce1933b28dfd
|
| 3 |
+
size 120784024
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:470458dd0858a90542a8d24f15e9ec1a26c42cee65f32fb5da25ab2ebd67e98f
|
| 3 |
+
size 240447226
|
rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:98e4d78481ea971bf0bb8b24b08dd275cdb09ff843a754e54fcb4e6c58eee180
|
| 3 |
+
size 14244
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1cefd69ea6948923999cb2f7313f46d5c92d1d5f55859e897a9ade2536d72159
|
| 3 |
+
size 1064
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[UNK]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[CLS]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[SEP]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[MASK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"50000": {
|
| 36 |
+
"content": "[PAD]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"extra_special_tokens": {},
|
| 47 |
+
"mask_token": "[MASK]",
|
| 48 |
+
"model_max_length": 512,
|
| 49 |
+
"pad_token": "[PAD]",
|
| 50 |
+
"sep_token": "[SEP]",
|
| 51 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
| 52 |
+
"unk_token": "[UNK]"
|
| 53 |
+
}
|
trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6f0413e64a519a4bd1af23d7266c6e95699e56f3d70c94df7f05e27996428e47
|
| 3 |
+
size 5560
|