metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8283932
- loss:MSELoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: >-
Through the Southern Gas Corridor pipeline, gas supply to the European
Union increased from 8.1 billion cubic meters in 2021 to 11.4 billion
cubic meters in 2022.
sentences:
- >-
After this meeting, the monthly amount collected from prosecutors and
investigators for the building was increased from 460 manats to 480
manats.
- >-
Məlik-Aslanov 1919-cu il fevralın 18-dək həm də müvəqqəti olaraq
ticarət, sənaye və ərzaq nazirinin səlahiyyətlərini də yerinə
yetirmişdi.
- >-
Üçüncü mərhələdə isə Şura hər bir layihə üzrə təqdim olunmuş ekspert
rəyini, QHT-nin Şuranın maliyyə dəstəyi hesabına əvvəlki illərdə həyata
keçirdiyi layihənin icra vəziyyətini və layihə idarəetmə təcrübəsini
nəzərə alaraq yekun qərar qəbul edir.
- source_sentence: >-
“Azərbaycan Uşaqlar Birliyi”nin sədri Kəmalə Ağazadə isə məsələnin
Elinanın deyil, digər şəxslərin üzərində fokuslanmasının doğru olmadığını
bildirdi: “Elinanın intiharı ilə bağlı məsələ bu gün də sosial şəbəkələrdə
xeyli müzakirə edilir, müxtəlif fikirlər bildirilir.
sentences:
- >-
1952-ci ilin aprelindən başlayaraq, "Azərbaycan Kültür Dərnəyi"
tərəfindən Ankarada aylıq "Azərbaycan" jurnalı nəşr olunur.
- >-
G. Məmmədovanın fikrincə abidənin konstruktiv həllinin analizi, kvadrat
təməldən dairəvi dacili və səkkizbucaqlı xarici barabana keçidin
yelkənlərlə təmin edilməsinə əsasən kilsəni təxminən VII-VIII əsrlərə
aid etmək mümkündür.
- >-
However, a signature campaign was conducted in the country to hold a
referendum on extending Nursultan Nazarbayev’s term, and nearly 5
million signatures were collected.
- source_sentence: >-
Thus, we preserve our history, traditions, and culture, and we do a lot to
support each other.
sentences:
- >-
Belə ki, ara yoldan Bakıxanov küçəsinə çıxan “Mercedes”in sürücü Özal
Quliyevin üstünlük nişanının tələbinə əməl etməməsi qəza ilə
nəticələnib.
- >-
Bundan başqa, onun sözlərinə görə, OPEK+ razılaşması neft bazarının
məhsul artıqlığından qurtulmasına kömək edib.
- >-
Onun fikrincə, İranın Azərbaycan vilayətləri də “Cənubi Azərbaycan”
olmalıdır.
- source_sentence: >-
It's true that, although Shahriyar, who is in the top four alongside
Aronyan in the rankings, couldn't win this match.
sentences:
- >-
After spending a year in exile, his father Sultan Abdul Hamid sent him
to Istanbul along with his sisters Ayşe Sultan and Şadiye Sultan, and
asked his brother Sultan Reşad to arrange their marriages.
- >-
Bu, ilk dəfədir ki ABŞ hərbi qüvvələri Rusiyanın keçən ay gizli olaraq
raketlər yerləşdirilməsini ictimai şəkildə təsdiq edir.
- >-
He noted that the Supreme Court held seven sessions, thoroughly reviewed
the lower court’s investigation, and upheld the death sentence.
- source_sentence: >-
At the same time, it is no secret that Washington’s strategic plans for
the Middle East include changing the current Iranian regime, which opposes
Western interests in the region.
sentences:
- >-
Sürücü Ə.Nəzərovla maşındakı digər sərnişinlər Rahim Mahmudov və Anar
Bayramov isə müxtəlif dərəcəli bədən xəsarətləri ilə Lənkəran Mərkəzi
Rayon Xəstəxanasına yerləşdirilib.
- >-
In addition, Turkey was demanding the territory that included the
districts of Akhaltsikhe, Akhalkalaki, Alexandropol (Gyumri), Surmali,
and Nakhchivan.
- >-
Bu vəziyyət kilsə meydanını düzəltdiyindən və qolları bərabər uzunluqda
olan xaç planı aydınlaşmadığı üçün bu plan növü qapalı yunan xaçı planı
adlandırılır.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'At the same time, it is no secret that Washington’s strategic plans for the Middle East include changing the current Iranian regime, which opposes Western interests in the region.',
'In addition, Turkey was demanding the territory that included the districts of Akhaltsikhe, Akhalkalaki, Alexandropol (Gyumri), Surmali, and Nakhchivan.',
'Sürücü Ə.Nəzərovla maşındakı digər sərnişinlər Rahim Mahmudov və Anar Bayramov isə müxtəlif dərəcəli bədən xəsarətləri ilə Lənkəran Mərkəzi Rayon Xəstəxanasına yerləşdirilib.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 8,283,932 training samples
- Columns:
sentence_0andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 label type string list details - min: 4 tokens
- mean: 29.8 tokens
- max: 89 tokens
- size: 384 elements
- Samples:
sentence_0 label “Biz “Hizbullah”a axan maliyyə dəstəyini dayandırmaq istəyirik və bu məqsədlə ABŞ hökuməti tutarlı məlumat qarşılığında 10 milyon dollaradək mükafat verməklə yanaşı digər tədbirlər də görəcək”, - Evanoff belə deyib.[-0.022054675966501236, 0.0932646170258522, -0.01854480803012848, -0.025271562859416008, 0.028432276099920273, ...]Bu dövləti bu gün müxalifətdə olanlar quranda Əli Həsənovun harada nə işlə məşğul olduğu bəlli deyildi.[-0.012831359170377254, 0.022371841594576836, -0.0271938294172287, 0.09667906910181046, 0.009270057082176208, ...]APA-nın “Hürriyet” qəzetinə istinadən verdiyi məlumata görə, ABŞ Hərbi Hava Qüvvələrinn Komandanlığı ən son 1991-ci ildə Körfəz savaşında istifadə edilmiş B-52 təyyarələrinin Qətərə göndərildiyini açıqlayıb.[-0.01321476697921753, 0.06281372904777527, 0.005026344675570726, -0.004140781704336405, 0.04239720478653908, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 64per_device_eval_batch_size: 64multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0039 | 500 | 0.0035 |
| 0.0077 | 1000 | 0.0024 |
| 0.0116 | 1500 | 0.0022 |
| 0.0155 | 2000 | 0.002 |
| 0.0193 | 2500 | 0.0019 |
| 0.0232 | 3000 | 0.0019 |
| 0.0270 | 3500 | 0.0018 |
| 0.0309 | 4000 | 0.0018 |
| 0.0348 | 4500 | 0.0017 |
| 0.0386 | 5000 | 0.0017 |
| 0.0425 | 5500 | 0.0016 |
| 0.0464 | 6000 | 0.0016 |
| 0.0502 | 6500 | 0.0016 |
| 0.0541 | 7000 | 0.0016 |
| 0.0579 | 7500 | 0.0015 |
| 0.0618 | 8000 | 0.0015 |
| 0.0657 | 8500 | 0.0015 |
| 0.0695 | 9000 | 0.0014 |
| 0.0734 | 9500 | 0.0014 |
| 0.0773 | 10000 | 0.0014 |
| 0.0811 | 10500 | 0.0013 |
| 0.0850 | 11000 | 0.0013 |
| 0.0888 | 11500 | 0.0013 |
| 0.0927 | 12000 | 0.0012 |
| 0.0966 | 12500 | 0.0012 |
| 0.1004 | 13000 | 0.0012 |
| 0.1043 | 13500 | 0.0012 |
| 0.1082 | 14000 | 0.0011 |
| 0.1120 | 14500 | 0.0011 |
| 0.1159 | 15000 | 0.0011 |
| 0.1197 | 15500 | 0.0011 |
| 0.1236 | 16000 | 0.0011 |
| 0.1275 | 16500 | 0.001 |
| 0.1313 | 17000 | 0.001 |
| 0.1352 | 17500 | 0.001 |
| 0.1391 | 18000 | 0.001 |
| 0.1429 | 18500 | 0.001 |
| 0.1468 | 19000 | 0.0009 |
| 0.1507 | 19500 | 0.0009 |
| 0.1545 | 20000 | 0.0009 |
| 0.1584 | 20500 | 0.0009 |
| 0.1622 | 21000 | 0.0009 |
| 0.1661 | 21500 | 0.0008 |
| 0.1700 | 22000 | 0.0008 |
| 0.1738 | 22500 | 0.0008 |
| 0.1777 | 23000 | 0.0008 |
| 0.1816 | 23500 | 0.0008 |
| 0.1854 | 24000 | 0.0008 |
| 0.1893 | 24500 | 0.0008 |
| 0.1931 | 25000 | 0.0008 |
| 0.1970 | 25500 | 0.0007 |
| 0.2009 | 26000 | 0.0007 |
| 0.2047 | 26500 | 0.0007 |
| 0.2086 | 27000 | 0.0007 |
| 0.2125 | 27500 | 0.0007 |
| 0.2163 | 28000 | 0.0007 |
| 0.2202 | 28500 | 0.0007 |
| 0.2240 | 29000 | 0.0007 |
| 0.2279 | 29500 | 0.0007 |
| 0.2318 | 30000 | 0.0007 |
| 0.2356 | 30500 | 0.0007 |
| 0.2395 | 31000 | 0.0007 |
| 0.2434 | 31500 | 0.0006 |
| 0.2472 | 32000 | 0.0006 |
| 0.2511 | 32500 | 0.0006 |
| 0.2550 | 33000 | 0.0006 |
| 0.2588 | 33500 | 0.0006 |
| 0.2627 | 34000 | 0.0006 |
| 0.2665 | 34500 | 0.0006 |
| 0.2704 | 35000 | 0.0006 |
| 0.2743 | 35500 | 0.0006 |
| 0.2781 | 36000 | 0.0006 |
| 0.2820 | 36500 | 0.0006 |
| 0.2859 | 37000 | 0.0006 |
| 0.2897 | 37500 | 0.0006 |
| 0.2936 | 38000 | 0.0006 |
| 0.2974 | 38500 | 0.0006 |
| 0.3013 | 39000 | 0.0006 |
| 0.3052 | 39500 | 0.0006 |
| 0.3090 | 40000 | 0.0006 |
| 0.3129 | 40500 | 0.0006 |
| 0.3168 | 41000 | 0.0006 |
| 0.3206 | 41500 | 0.0005 |
| 0.3245 | 42000 | 0.0005 |
| 0.3283 | 42500 | 0.0005 |
| 0.3322 | 43000 | 0.0005 |
| 0.3361 | 43500 | 0.0005 |
| 0.3399 | 44000 | 0.0005 |
| 0.3438 | 44500 | 0.0005 |
| 0.3477 | 45000 | 0.0005 |
| 0.3515 | 45500 | 0.0005 |
| 0.3554 | 46000 | 0.0005 |
| 0.3592 | 46500 | 0.0005 |
| 0.3631 | 47000 | 0.0005 |
| 0.3670 | 47500 | 0.0005 |
| 0.3708 | 48000 | 0.0005 |
| 0.3747 | 48500 | 0.0005 |
| 0.3786 | 49000 | 0.0005 |
| 0.3824 | 49500 | 0.0005 |
| 0.3863 | 50000 | 0.0005 |
| 0.3902 | 50500 | 0.0005 |
| 0.3940 | 51000 | 0.0005 |
| 0.3979 | 51500 | 0.0005 |
| 0.4017 | 52000 | 0.0005 |
| 0.4056 | 52500 | 0.0005 |
| 0.4095 | 53000 | 0.0005 |
| 0.4133 | 53500 | 0.0005 |
| 0.4172 | 54000 | 0.0005 |
| 0.4211 | 54500 | 0.0005 |
| 0.4249 | 55000 | 0.0005 |
| 0.4288 | 55500 | 0.0005 |
| 0.4326 | 56000 | 0.0005 |
| 0.4365 | 56500 | 0.0005 |
| 0.4404 | 57000 | 0.0005 |
| 0.4442 | 57500 | 0.0005 |
| 0.4481 | 58000 | 0.0005 |
| 0.4520 | 58500 | 0.0005 |
| 0.4558 | 59000 | 0.0005 |
| 0.4597 | 59500 | 0.0005 |
| 0.4635 | 60000 | 0.0005 |
| 0.4674 | 60500 | 0.0005 |
| 0.4713 | 61000 | 0.0005 |
| 0.4751 | 61500 | 0.0005 |
| 0.4790 | 62000 | 0.0005 |
| 0.4829 | 62500 | 0.0005 |
| 0.4867 | 63000 | 0.0005 |
| 0.4906 | 63500 | 0.0005 |
| 0.4944 | 64000 | 0.0005 |
| 0.4983 | 64500 | 0.0005 |
| 0.5022 | 65000 | 0.0005 |
| 0.5060 | 65500 | 0.0004 |
| 0.5099 | 66000 | 0.0004 |
| 0.5138 | 66500 | 0.0004 |
| 0.5176 | 67000 | 0.0004 |
| 0.5215 | 67500 | 0.0004 |
| 0.5254 | 68000 | 0.0004 |
| 0.5292 | 68500 | 0.0004 |
| 0.5331 | 69000 | 0.0004 |
| 0.5369 | 69500 | 0.0004 |
| 0.5408 | 70000 | 0.0004 |
| 0.5447 | 70500 | 0.0004 |
| 0.5485 | 71000 | 0.0004 |
| 0.5524 | 71500 | 0.0004 |
| 0.5563 | 72000 | 0.0004 |
| 0.5601 | 72500 | 0.0004 |
| 0.5640 | 73000 | 0.0004 |
| 0.5678 | 73500 | 0.0004 |
| 0.5717 | 74000 | 0.0004 |
| 0.5756 | 74500 | 0.0004 |
| 0.5794 | 75000 | 0.0004 |
| 0.5833 | 75500 | 0.0004 |
| 0.5872 | 76000 | 0.0004 |
| 0.5910 | 76500 | 0.0004 |
| 0.5949 | 77000 | 0.0004 |
| 0.5987 | 77500 | 0.0004 |
| 0.6026 | 78000 | 0.0004 |
| 0.6065 | 78500 | 0.0004 |
| 0.6103 | 79000 | 0.0004 |
| 0.6142 | 79500 | 0.0004 |
| 0.6181 | 80000 | 0.0004 |
| 0.6219 | 80500 | 0.0004 |
| 0.6258 | 81000 | 0.0004 |
| 0.6296 | 81500 | 0.0004 |
| 0.6335 | 82000 | 0.0004 |
| 0.6374 | 82500 | 0.0004 |
| 0.6412 | 83000 | 0.0004 |
| 0.6451 | 83500 | 0.0004 |
| 0.6490 | 84000 | 0.0004 |
| 0.6528 | 84500 | 0.0004 |
| 0.6567 | 85000 | 0.0004 |
| 0.6606 | 85500 | 0.0004 |
| 0.6644 | 86000 | 0.0004 |
| 0.6683 | 86500 | 0.0004 |
| 0.6721 | 87000 | 0.0004 |
| 0.6760 | 87500 | 0.0004 |
| 0.6799 | 88000 | 0.0004 |
| 0.6837 | 88500 | 0.0004 |
| 0.6876 | 89000 | 0.0004 |
| 0.6915 | 89500 | 0.0004 |
| 0.6953 | 90000 | 0.0004 |
| 0.6992 | 90500 | 0.0004 |
| 0.7030 | 91000 | 0.0004 |
| 0.7069 | 91500 | 0.0004 |
| 0.7108 | 92000 | 0.0004 |
| 0.7146 | 92500 | 0.0004 |
| 0.7185 | 93000 | 0.0004 |
| 0.7224 | 93500 | 0.0004 |
| 0.7262 | 94000 | 0.0004 |
| 0.7301 | 94500 | 0.0004 |
| 0.7339 | 95000 | 0.0004 |
| 0.7378 | 95500 | 0.0004 |
| 0.7417 | 96000 | 0.0004 |
| 0.7455 | 96500 | 0.0004 |
| 0.7494 | 97000 | 0.0004 |
| 0.7533 | 97500 | 0.0004 |
| 0.7571 | 98000 | 0.0004 |
| 0.7610 | 98500 | 0.0004 |
| 0.7649 | 99000 | 0.0004 |
| 0.7687 | 99500 | 0.0004 |
| 0.7726 | 100000 | 0.0004 |
| 0.7764 | 100500 | 0.0004 |
| 0.7803 | 101000 | 0.0004 |
| 0.7842 | 101500 | 0.0004 |
| 0.7880 | 102000 | 0.0004 |
| 0.7919 | 102500 | 0.0004 |
| 0.7958 | 103000 | 0.0004 |
| 0.7996 | 103500 | 0.0004 |
| 0.8035 | 104000 | 0.0004 |
| 0.8073 | 104500 | 0.0004 |
| 0.8112 | 105000 | 0.0004 |
| 0.8151 | 105500 | 0.0004 |
| 0.8189 | 106000 | 0.0004 |
| 0.8228 | 106500 | 0.0004 |
| 0.8267 | 107000 | 0.0004 |
| 0.8305 | 107500 | 0.0004 |
| 0.8344 | 108000 | 0.0004 |
| 0.8382 | 108500 | 0.0004 |
| 0.8421 | 109000 | 0.0004 |
| 0.8460 | 109500 | 0.0004 |
| 0.8498 | 110000 | 0.0004 |
| 0.8537 | 110500 | 0.0004 |
| 0.8576 | 111000 | 0.0004 |
| 0.8614 | 111500 | 0.0004 |
| 0.8653 | 112000 | 0.0004 |
| 0.8691 | 112500 | 0.0004 |
| 0.8730 | 113000 | 0.0004 |
| 0.8769 | 113500 | 0.0004 |
| 0.8807 | 114000 | 0.0004 |
| 0.8846 | 114500 | 0.0004 |
| 0.8885 | 115000 | 0.0004 |
| 0.8923 | 115500 | 0.0004 |
| 0.8962 | 116000 | 0.0004 |
| 0.9001 | 116500 | 0.0004 |
| 0.9039 | 117000 | 0.0004 |
| 0.9078 | 117500 | 0.0004 |
| 0.9116 | 118000 | 0.0004 |
| 0.9155 | 118500 | 0.0004 |
| 0.9194 | 119000 | 0.0004 |
| 0.9232 | 119500 | 0.0004 |
| 0.9271 | 120000 | 0.0004 |
| 0.9310 | 120500 | 0.0004 |
| 0.9348 | 121000 | 0.0004 |
| 0.9387 | 121500 | 0.0004 |
| 0.9425 | 122000 | 0.0004 |
| 0.9464 | 122500 | 0.0004 |
| 0.9503 | 123000 | 0.0004 |
| 0.9541 | 123500 | 0.0004 |
| 0.9580 | 124000 | 0.0004 |
| 0.9619 | 124500 | 0.0004 |
| 0.9657 | 125000 | 0.0004 |
| 0.9696 | 125500 | 0.0004 |
| 0.9734 | 126000 | 0.0004 |
| 0.9773 | 126500 | 0.0004 |
| 0.9812 | 127000 | 0.0004 |
| 0.9850 | 127500 | 0.0004 |
| 0.9889 | 128000 | 0.0004 |
| 0.9928 | 128500 | 0.0004 |
| 0.9966 | 129000 | 0.0004 |
| 1.0005 | 129500 | 0.0004 |
| 1.0043 | 130000 | 0.0004 |
| 1.0082 | 130500 | 0.0004 |
| 1.0121 | 131000 | 0.0004 |
| 1.0159 | 131500 | 0.0004 |
| 1.0198 | 132000 | 0.0004 |
| 1.0237 | 132500 | 0.0004 |
| 1.0275 | 133000 | 0.0004 |
| 1.0314 | 133500 | 0.0004 |
| 1.0353 | 134000 | 0.0004 |
| 1.0391 | 134500 | 0.0004 |
| 1.0430 | 135000 | 0.0004 |
| 1.0468 | 135500 | 0.0004 |
| 1.0507 | 136000 | 0.0004 |
| 1.0546 | 136500 | 0.0004 |
| 1.0584 | 137000 | 0.0004 |
| 1.0623 | 137500 | 0.0004 |
| 1.0662 | 138000 | 0.0004 |
| 1.0700 | 138500 | 0.0004 |
| 1.0739 | 139000 | 0.0004 |
| 1.0777 | 139500 | 0.0004 |
| 1.0816 | 140000 | 0.0004 |
| 1.0855 | 140500 | 0.0004 |
| 1.0893 | 141000 | 0.0004 |
| 1.0932 | 141500 | 0.0004 |
| 1.0971 | 142000 | 0.0004 |
| 1.1009 | 142500 | 0.0004 |
| 1.1048 | 143000 | 0.0004 |
| 1.1086 | 143500 | 0.0004 |
| 1.1125 | 144000 | 0.0004 |
| 1.1164 | 144500 | 0.0004 |
| 1.1202 | 145000 | 0.0004 |
| 1.1241 | 145500 | 0.0004 |
| 1.1280 | 146000 | 0.0004 |
| 1.1318 | 146500 | 0.0004 |
| 1.1357 | 147000 | 0.0004 |
| 1.1396 | 147500 | 0.0004 |
| 1.1434 | 148000 | 0.0004 |
| 1.1473 | 148500 | 0.0004 |
| 1.1511 | 149000 | 0.0004 |
| 1.1550 | 149500 | 0.0004 |
| 1.1589 | 150000 | 0.0004 |
| 1.1627 | 150500 | 0.0004 |
| 1.1666 | 151000 | 0.0004 |
| 1.1705 | 151500 | 0.0004 |
| 1.1743 | 152000 | 0.0004 |
| 1.1782 | 152500 | 0.0004 |
| 1.1820 | 153000 | 0.0004 |
| 1.1859 | 153500 | 0.0004 |
| 1.1898 | 154000 | 0.0004 |
| 1.1936 | 154500 | 0.0004 |
| 1.1975 | 155000 | 0.0004 |
| 1.2014 | 155500 | 0.0003 |
| 1.2052 | 156000 | 0.0003 |
| 1.2091 | 156500 | 0.0004 |
| 1.2129 | 157000 | 0.0003 |
| 1.2168 | 157500 | 0.0004 |
| 1.2207 | 158000 | 0.0003 |
| 1.2245 | 158500 | 0.0003 |
| 1.2284 | 159000 | 0.0003 |
| 1.2323 | 159500 | 0.0003 |
| 1.2361 | 160000 | 0.0003 |
| 1.2400 | 160500 | 0.0003 |
| 1.2438 | 161000 | 0.0003 |
| 1.2477 | 161500 | 0.0003 |
| 1.2516 | 162000 | 0.0003 |
| 1.2554 | 162500 | 0.0003 |
| 1.2593 | 163000 | 0.0003 |
| 1.2632 | 163500 | 0.0003 |
| 1.2670 | 164000 | 0.0003 |
| 1.2709 | 164500 | 0.0003 |
| 1.2748 | 165000 | 0.0003 |
| 1.2786 | 165500 | 0.0003 |
| 1.2825 | 166000 | 0.0003 |
| 1.2863 | 166500 | 0.0003 |
| 1.2902 | 167000 | 0.0003 |
| 1.2941 | 167500 | 0.0003 |
| 1.2979 | 168000 | 0.0003 |
| 1.3018 | 168500 | 0.0003 |
| 1.3057 | 169000 | 0.0003 |
| 1.3095 | 169500 | 0.0003 |
| 1.3134 | 170000 | 0.0003 |
| 1.3172 | 170500 | 0.0003 |
| 1.3211 | 171000 | 0.0003 |
| 1.3250 | 171500 | 0.0003 |
| 1.3288 | 172000 | 0.0003 |
| 1.3327 | 172500 | 0.0003 |
| 1.3366 | 173000 | 0.0003 |
| 1.3404 | 173500 | 0.0003 |
| 1.3443 | 174000 | 0.0003 |
| 1.3481 | 174500 | 0.0003 |
| 1.3520 | 175000 | 0.0003 |
| 1.3559 | 175500 | 0.0003 |
| 1.3597 | 176000 | 0.0003 |
| 1.3636 | 176500 | 0.0003 |
| 1.3675 | 177000 | 0.0003 |
| 1.3713 | 177500 | 0.0003 |
| 1.3752 | 178000 | 0.0003 |
| 1.3790 | 178500 | 0.0003 |
| 1.3829 | 179000 | 0.0003 |
| 1.3868 | 179500 | 0.0003 |
| 1.3906 | 180000 | 0.0003 |
| 1.3945 | 180500 | 0.0003 |
| 1.3984 | 181000 | 0.0003 |
| 1.4022 | 181500 | 0.0003 |
| 1.4061 | 182000 | 0.0003 |
| 1.4100 | 182500 | 0.0003 |
| 1.4138 | 183000 | 0.0003 |
| 1.4177 | 183500 | 0.0003 |
| 1.4215 | 184000 | 0.0003 |
| 1.4254 | 184500 | 0.0003 |
| 1.4293 | 185000 | 0.0003 |
| 1.4331 | 185500 | 0.0003 |
| 1.4370 | 186000 | 0.0003 |
| 1.4409 | 186500 | 0.0003 |
| 1.4447 | 187000 | 0.0003 |
| 1.4486 | 187500 | 0.0003 |
| 1.4524 | 188000 | 0.0003 |
| 1.4563 | 188500 | 0.0003 |
| 1.4602 | 189000 | 0.0003 |
| 1.4640 | 189500 | 0.0003 |
| 1.4679 | 190000 | 0.0003 |
| 1.4718 | 190500 | 0.0003 |
| 1.4756 | 191000 | 0.0003 |
| 1.4795 | 191500 | 0.0003 |
| 1.4833 | 192000 | 0.0003 |
| 1.4872 | 192500 | 0.0003 |
| 1.4911 | 193000 | 0.0003 |
| 1.4949 | 193500 | 0.0003 |
| 1.4988 | 194000 | 0.0003 |
| 1.5027 | 194500 | 0.0003 |
| 1.5065 | 195000 | 0.0003 |
| 1.5104 | 195500 | 0.0003 |
| 1.5143 | 196000 | 0.0003 |
| 1.5181 | 196500 | 0.0003 |
| 1.5220 | 197000 | 0.0003 |
| 1.5258 | 197500 | 0.0003 |
| 1.5297 | 198000 | 0.0003 |
| 1.5336 | 198500 | 0.0003 |
| 1.5374 | 199000 | 0.0003 |
| 1.5413 | 199500 | 0.0003 |
| 1.5452 | 200000 | 0.0003 |
| 1.5490 | 200500 | 0.0003 |
| 1.5529 | 201000 | 0.0003 |
| 1.5567 | 201500 | 0.0003 |
| 1.5606 | 202000 | 0.0003 |
| 1.5645 | 202500 | 0.0003 |
| 1.5683 | 203000 | 0.0003 |
| 1.5722 | 203500 | 0.0003 |
| 1.5761 | 204000 | 0.0003 |
| 1.5799 | 204500 | 0.0003 |
| 1.5838 | 205000 | 0.0003 |
| 1.5876 | 205500 | 0.0003 |
| 1.5915 | 206000 | 0.0003 |
| 1.5954 | 206500 | 0.0003 |
| 1.5992 | 207000 | 0.0003 |
| 1.6031 | 207500 | 0.0003 |
| 1.6070 | 208000 | 0.0003 |
| 1.6108 | 208500 | 0.0003 |
| 1.6147 | 209000 | 0.0003 |
| 1.6185 | 209500 | 0.0003 |
| 1.6224 | 210000 | 0.0003 |
| 1.6263 | 210500 | 0.0003 |
| 1.6301 | 211000 | 0.0003 |
| 1.6340 | 211500 | 0.0003 |
| 1.6379 | 212000 | 0.0003 |
| 1.6417 | 212500 | 0.0003 |
| 1.6456 | 213000 | 0.0003 |
| 1.6495 | 213500 | 0.0003 |
| 1.6533 | 214000 | 0.0003 |
| 1.6572 | 214500 | 0.0003 |
| 1.6610 | 215000 | 0.0003 |
| 1.6649 | 215500 | 0.0003 |
| 1.6688 | 216000 | 0.0003 |
| 1.6726 | 216500 | 0.0003 |
| 1.6765 | 217000 | 0.0003 |
| 1.6804 | 217500 | 0.0003 |
| 1.6842 | 218000 | 0.0003 |
| 1.6881 | 218500 | 0.0003 |
| 1.6919 | 219000 | 0.0003 |
| 1.6958 | 219500 | 0.0003 |
| 1.6997 | 220000 | 0.0003 |
| 1.7035 | 220500 | 0.0003 |
| 1.7074 | 221000 | 0.0003 |
| 1.7113 | 221500 | 0.0003 |
| 1.7151 | 222000 | 0.0003 |
| 1.7190 | 222500 | 0.0003 |
| 1.7228 | 223000 | 0.0003 |
| 1.7267 | 223500 | 0.0003 |
| 1.7306 | 224000 | 0.0003 |
| 1.7344 | 224500 | 0.0003 |
| 1.7383 | 225000 | 0.0003 |
| 1.7422 | 225500 | 0.0003 |
| 1.7460 | 226000 | 0.0003 |
| 1.7499 | 226500 | 0.0003 |
| 1.7537 | 227000 | 0.0003 |
| 1.7576 | 227500 | 0.0003 |
| 1.7615 | 228000 | 0.0003 |
| 1.7653 | 228500 | 0.0003 |
| 1.7692 | 229000 | 0.0003 |
| 1.7731 | 229500 | 0.0003 |
| 1.7769 | 230000 | 0.0003 |
| 1.7808 | 230500 | 0.0003 |
| 1.7847 | 231000 | 0.0003 |
| 1.7885 | 231500 | 0.0003 |
| 1.7924 | 232000 | 0.0003 |
| 1.7962 | 232500 | 0.0003 |
| 1.8001 | 233000 | 0.0003 |
| 1.8040 | 233500 | 0.0003 |
| 1.8078 | 234000 | 0.0003 |
| 1.8117 | 234500 | 0.0003 |
| 1.8156 | 235000 | 0.0003 |
| 1.8194 | 235500 | 0.0003 |
| 1.8233 | 236000 | 0.0003 |
| 1.8271 | 236500 | 0.0003 |
| 1.8310 | 237000 | 0.0003 |
| 1.8349 | 237500 | 0.0003 |
| 1.8387 | 238000 | 0.0003 |
| 1.8426 | 238500 | 0.0003 |
| 1.8465 | 239000 | 0.0003 |
| 1.8503 | 239500 | 0.0003 |
| 1.8542 | 240000 | 0.0003 |
| 1.8580 | 240500 | 0.0003 |
| 1.8619 | 241000 | 0.0003 |
| 1.8658 | 241500 | 0.0003 |
| 1.8696 | 242000 | 0.0003 |
| 1.8735 | 242500 | 0.0003 |
| 1.8774 | 243000 | 0.0003 |
| 1.8812 | 243500 | 0.0003 |
| 1.8851 | 244000 | 0.0003 |
| 1.8889 | 244500 | 0.0003 |
| 1.8928 | 245000 | 0.0003 |
| 1.8967 | 245500 | 0.0003 |
| 1.9005 | 246000 | 0.0003 |
| 1.9044 | 246500 | 0.0003 |
| 1.9083 | 247000 | 0.0003 |
| 1.9121 | 247500 | 0.0003 |
| 1.9160 | 248000 | 0.0003 |
| 1.9199 | 248500 | 0.0003 |
| 1.9237 | 249000 | 0.0003 |
| 1.9276 | 249500 | 0.0003 |
| 1.9314 | 250000 | 0.0003 |
| 1.9353 | 250500 | 0.0003 |
| 1.9392 | 251000 | 0.0003 |
| 1.9430 | 251500 | 0.0003 |
| 1.9469 | 252000 | 0.0003 |
| 1.9508 | 252500 | 0.0003 |
| 1.9546 | 253000 | 0.0003 |
| 1.9585 | 253500 | 0.0003 |
| 1.9623 | 254000 | 0.0003 |
| 1.9662 | 254500 | 0.0003 |
| 1.9701 | 255000 | 0.0003 |
| 1.9739 | 255500 | 0.0003 |
| 1.9778 | 256000 | 0.0003 |
| 1.9817 | 256500 | 0.0003 |
| 1.9855 | 257000 | 0.0003 |
| 1.9894 | 257500 | 0.0003 |
| 1.9932 | 258000 | 0.0003 |
| 1.9971 | 258500 | 0.0003 |
| 2.0010 | 259000 | 0.0003 |
| 2.0048 | 259500 | 0.0003 |
| 2.0087 | 260000 | 0.0003 |
| 2.0126 | 260500 | 0.0003 |
| 2.0164 | 261000 | 0.0003 |
| 2.0203 | 261500 | 0.0003 |
| 2.0242 | 262000 | 0.0003 |
| 2.0280 | 262500 | 0.0003 |
| 2.0319 | 263000 | 0.0003 |
| 2.0357 | 263500 | 0.0003 |
| 2.0396 | 264000 | 0.0003 |
| 2.0435 | 264500 | 0.0003 |
| 2.0473 | 265000 | 0.0003 |
| 2.0512 | 265500 | 0.0003 |
| 2.0551 | 266000 | 0.0003 |
| 2.0589 | 266500 | 0.0003 |
| 2.0628 | 267000 | 0.0003 |
| 2.0666 | 267500 | 0.0003 |
| 2.0705 | 268000 | 0.0003 |
| 2.0744 | 268500 | 0.0003 |
| 2.0782 | 269000 | 0.0003 |
| 2.0821 | 269500 | 0.0003 |
| 2.0860 | 270000 | 0.0003 |
| 2.0898 | 270500 | 0.0003 |
| 2.0937 | 271000 | 0.0003 |
| 2.0975 | 271500 | 0.0003 |
| 2.1014 | 272000 | 0.0003 |
| 2.1053 | 272500 | 0.0003 |
| 2.1091 | 273000 | 0.0003 |
| 2.1130 | 273500 | 0.0003 |
| 2.1169 | 274000 | 0.0003 |
| 2.1207 | 274500 | 0.0003 |
| 2.1246 | 275000 | 0.0003 |
| 2.1284 | 275500 | 0.0003 |
| 2.1323 | 276000 | 0.0003 |
| 2.1362 | 276500 | 0.0003 |
| 2.1400 | 277000 | 0.0003 |
| 2.1439 | 277500 | 0.0003 |
| 2.1478 | 278000 | 0.0003 |
| 2.1516 | 278500 | 0.0003 |
| 2.1555 | 279000 | 0.0003 |
| 2.1594 | 279500 | 0.0003 |
| 2.1632 | 280000 | 0.0003 |
| 2.1671 | 280500 | 0.0003 |
| 2.1709 | 281000 | 0.0003 |
| 2.1748 | 281500 | 0.0003 |
| 2.1787 | 282000 | 0.0003 |
| 2.1825 | 282500 | 0.0003 |
| 2.1864 | 283000 | 0.0003 |
| 2.1903 | 283500 | 0.0003 |
| 2.1941 | 284000 | 0.0003 |
| 2.1980 | 284500 | 0.0003 |
| 2.2018 | 285000 | 0.0003 |
| 2.2057 | 285500 | 0.0003 |
| 2.2096 | 286000 | 0.0003 |
| 2.2134 | 286500 | 0.0003 |
| 2.2173 | 287000 | 0.0003 |
| 2.2212 | 287500 | 0.0003 |
| 2.2250 | 288000 | 0.0003 |
| 2.2289 | 288500 | 0.0003 |
| 2.2327 | 289000 | 0.0003 |
| 2.2366 | 289500 | 0.0003 |
| 2.2405 | 290000 | 0.0003 |
| 2.2443 | 290500 | 0.0003 |
| 2.2482 | 291000 | 0.0003 |
| 2.2521 | 291500 | 0.0003 |
| 2.2559 | 292000 | 0.0003 |
| 2.2598 | 292500 | 0.0003 |
| 2.2636 | 293000 | 0.0003 |
| 2.2675 | 293500 | 0.0003 |
| 2.2714 | 294000 | 0.0003 |
| 2.2752 | 294500 | 0.0003 |
| 2.2791 | 295000 | 0.0003 |
| 2.2830 | 295500 | 0.0003 |
| 2.2868 | 296000 | 0.0003 |
| 2.2907 | 296500 | 0.0003 |
| 2.2946 | 297000 | 0.0003 |
| 2.2984 | 297500 | 0.0003 |
| 2.3023 | 298000 | 0.0003 |
| 2.3061 | 298500 | 0.0003 |
| 2.3100 | 299000 | 0.0003 |
| 2.3139 | 299500 | 0.0003 |
| 2.3177 | 300000 | 0.0003 |
| 2.3216 | 300500 | 0.0003 |
| 2.3255 | 301000 | 0.0003 |
| 2.3293 | 301500 | 0.0003 |
| 2.3332 | 302000 | 0.0003 |
| 2.3370 | 302500 | 0.0003 |
| 2.3409 | 303000 | 0.0003 |
| 2.3448 | 303500 | 0.0003 |
| 2.3486 | 304000 | 0.0003 |
| 2.3525 | 304500 | 0.0003 |
| 2.3564 | 305000 | 0.0003 |
| 2.3602 | 305500 | 0.0003 |
| 2.3641 | 306000 | 0.0003 |
| 2.3679 | 306500 | 0.0003 |
| 2.3718 | 307000 | 0.0003 |
| 2.3757 | 307500 | 0.0003 |
| 2.3795 | 308000 | 0.0003 |
| 2.3834 | 308500 | 0.0003 |
| 2.3873 | 309000 | 0.0003 |
| 2.3911 | 309500 | 0.0003 |
| 2.3950 | 310000 | 0.0003 |
| 2.3989 | 310500 | 0.0003 |
| 2.4027 | 311000 | 0.0003 |
| 2.4066 | 311500 | 0.0003 |
| 2.4104 | 312000 | 0.0003 |
| 2.4143 | 312500 | 0.0003 |
| 2.4182 | 313000 | 0.0003 |
| 2.4220 | 313500 | 0.0003 |
| 2.4259 | 314000 | 0.0003 |
| 2.4298 | 314500 | 0.0003 |
| 2.4336 | 315000 | 0.0003 |
| 2.4375 | 315500 | 0.0003 |
| 2.4413 | 316000 | 0.0003 |
| 2.4452 | 316500 | 0.0003 |
| 2.4491 | 317000 | 0.0003 |
| 2.4529 | 317500 | 0.0003 |
| 2.4568 | 318000 | 0.0003 |
| 2.4607 | 318500 | 0.0003 |
| 2.4645 | 319000 | 0.0003 |
| 2.4684 | 319500 | 0.0003 |
| 2.4722 | 320000 | 0.0003 |
| 2.4761 | 320500 | 0.0003 |
| 2.4800 | 321000 | 0.0003 |
| 2.4838 | 321500 | 0.0003 |
| 2.4877 | 322000 | 0.0003 |
| 2.4916 | 322500 | 0.0003 |
| 2.4954 | 323000 | 0.0003 |
| 2.4993 | 323500 | 0.0003 |
| 2.5031 | 324000 | 0.0003 |
| 2.5070 | 324500 | 0.0003 |
| 2.5109 | 325000 | 0.0003 |
| 2.5147 | 325500 | 0.0003 |
| 2.5186 | 326000 | 0.0003 |
| 2.5225 | 326500 | 0.0003 |
| 2.5263 | 327000 | 0.0003 |
| 2.5302 | 327500 | 0.0003 |
| 2.5341 | 328000 | 0.0003 |
| 2.5379 | 328500 | 0.0003 |
| 2.5418 | 329000 | 0.0003 |
| 2.5456 | 329500 | 0.0003 |
| 2.5495 | 330000 | 0.0003 |
| 2.5534 | 330500 | 0.0003 |
| 2.5572 | 331000 | 0.0003 |
| 2.5611 | 331500 | 0.0003 |
| 2.5650 | 332000 | 0.0003 |
| 2.5688 | 332500 | 0.0003 |
| 2.5727 | 333000 | 0.0003 |
| 2.5765 | 333500 | 0.0003 |
| 2.5804 | 334000 | 0.0003 |
| 2.5843 | 334500 | 0.0003 |
| 2.5881 | 335000 | 0.0003 |
| 2.5920 | 335500 | 0.0003 |
| 2.5959 | 336000 | 0.0003 |
| 2.5997 | 336500 | 0.0003 |
| 2.6036 | 337000 | 0.0003 |
| 2.6074 | 337500 | 0.0003 |
| 2.6113 | 338000 | 0.0003 |
| 2.6152 | 338500 | 0.0003 |
| 2.6190 | 339000 | 0.0003 |
| 2.6229 | 339500 | 0.0003 |
| 2.6268 | 340000 | 0.0003 |
| 2.6306 | 340500 | 0.0003 |
| 2.6345 | 341000 | 0.0003 |
| 2.6383 | 341500 | 0.0003 |
| 2.6422 | 342000 | 0.0003 |
| 2.6461 | 342500 | 0.0003 |
| 2.6499 | 343000 | 0.0003 |
| 2.6538 | 343500 | 0.0003 |
| 2.6577 | 344000 | 0.0003 |
| 2.6615 | 344500 | 0.0003 |
| 2.6654 | 345000 | 0.0003 |
| 2.6693 | 345500 | 0.0003 |
| 2.6731 | 346000 | 0.0003 |
| 2.6770 | 346500 | 0.0003 |
| 2.6808 | 347000 | 0.0003 |
| 2.6847 | 347500 | 0.0003 |
| 2.6886 | 348000 | 0.0003 |
| 2.6924 | 348500 | 0.0003 |
| 2.6963 | 349000 | 0.0003 |
| 2.7002 | 349500 | 0.0003 |
| 2.7040 | 350000 | 0.0003 |
| 2.7079 | 350500 | 0.0003 |
| 2.7117 | 351000 | 0.0003 |
| 2.7156 | 351500 | 0.0003 |
| 2.7195 | 352000 | 0.0003 |
| 2.7233 | 352500 | 0.0003 |
| 2.7272 | 353000 | 0.0003 |
| 2.7311 | 353500 | 0.0003 |
| 2.7349 | 354000 | 0.0003 |
| 2.7388 | 354500 | 0.0003 |
| 2.7426 | 355000 | 0.0003 |
| 2.7465 | 355500 | 0.0003 |
| 2.7504 | 356000 | 0.0003 |
| 2.7542 | 356500 | 0.0003 |
| 2.7581 | 357000 | 0.0003 |
| 2.7620 | 357500 | 0.0003 |
| 2.7658 | 358000 | 0.0003 |
| 2.7697 | 358500 | 0.0003 |
| 2.7736 | 359000 | 0.0003 |
| 2.7774 | 359500 | 0.0003 |
| 2.7813 | 360000 | 0.0003 |
| 2.7851 | 360500 | 0.0003 |
| 2.7890 | 361000 | 0.0003 |
| 2.7929 | 361500 | 0.0003 |
| 2.7967 | 362000 | 0.0003 |
| 2.8006 | 362500 | 0.0003 |
| 2.8045 | 363000 | 0.0003 |
| 2.8083 | 363500 | 0.0003 |
| 2.8122 | 364000 | 0.0003 |
| 2.8160 | 364500 | 0.0003 |
| 2.8199 | 365000 | 0.0003 |
| 2.8238 | 365500 | 0.0003 |
| 2.8276 | 366000 | 0.0003 |
| 2.8315 | 366500 | 0.0003 |
| 2.8354 | 367000 | 0.0003 |
| 2.8392 | 367500 | 0.0003 |
| 2.8431 | 368000 | 0.0003 |
| 2.8469 | 368500 | 0.0003 |
| 2.8508 | 369000 | 0.0003 |
| 2.8547 | 369500 | 0.0003 |
| 2.8585 | 370000 | 0.0003 |
| 2.8624 | 370500 | 0.0003 |
| 2.8663 | 371000 | 0.0003 |
| 2.8701 | 371500 | 0.0003 |
| 2.8740 | 372000 | 0.0003 |
| 2.8778 | 372500 | 0.0003 |
| 2.8817 | 373000 | 0.0003 |
| 2.8856 | 373500 | 0.0003 |
| 2.8894 | 374000 | 0.0003 |
| 2.8933 | 374500 | 0.0003 |
| 2.8972 | 375000 | 0.0003 |
| 2.9010 | 375500 | 0.0003 |
| 2.9049 | 376000 | 0.0003 |
| 2.9088 | 376500 | 0.0003 |
| 2.9126 | 377000 | 0.0003 |
| 2.9165 | 377500 | 0.0003 |
| 2.9203 | 378000 | 0.0003 |
| 2.9242 | 378500 | 0.0003 |
| 2.9281 | 379000 | 0.0003 |
| 2.9319 | 379500 | 0.0003 |
| 2.9358 | 380000 | 0.0003 |
| 2.9397 | 380500 | 0.0003 |
| 2.9435 | 381000 | 0.0003 |
| 2.9474 | 381500 | 0.0003 |
| 2.9512 | 382000 | 0.0003 |
| 2.9551 | 382500 | 0.0003 |
| 2.9590 | 383000 | 0.0003 |
| 2.9628 | 383500 | 0.0003 |
| 2.9667 | 384000 | 0.0003 |
| 2.9706 | 384500 | 0.0003 |
| 2.9744 | 385000 | 0.0003 |
| 2.9783 | 385500 | 0.0003 |
| 2.9821 | 386000 | 0.0003 |
| 2.9860 | 386500 | 0.0003 |
| 2.9899 | 387000 | 0.0003 |
| 2.9937 | 387500 | 0.0003 |
| 2.9976 | 388000 | 0.0003 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.5.1+cu121
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}