Update README.md
Browse files
README.md
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
license: cc-by-nc-4.0
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
-
pipeline_tag: text-generation
|
| 6 |
tags:
|
| 7 |
- nvidia
|
| 8 |
- AceInstruct
|
|
@@ -10,17 +11,48 @@ tags:
|
|
| 10 |
- math
|
| 11 |
- general_domain
|
| 12 |
- instruct_model
|
| 13 |
-
-
|
| 14 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
These models are fine-tuned on Qwen2.5-Base using [general SFT datasets](https://huggingface.co/datasets/nvidia/AceMath-Instruct-Training-Data). These same datasets are also used in the training of [AceMath-Instruct](https://huggingface.co/nvidia/AceMath-72B-Instruct). Different from AceMath-Instruct which is specialized for math questions, AceInstruct is versatile and can be applied to a wide range of domains. Benchmark evaluations across coding, mathematics, and general knowledge tasks demonstrate that AceInstruct delivers performance comparable to Qwen2.5-Instruct.
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
## Benchmark Results
|
|
|
|
| 24 |
| | Qwen2.5-1.5B-Instruct | AceInstruct-1.5B | Qwen2.5-7B-Instruct | AceInstruct-7B | Qwen2.5-72B-Instruct | AceInstruct-72B |
|
| 25 |
| --------- |:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|
|
| 26 |
| HumanEval | 61.60 | 73.17 | 84.80 | 85.37 | 86.60 | 89.63 |
|
|
@@ -31,68 +63,10 @@ For more information about AceInstruct, check our [website](https://research.nvi
|
|
| 31 |
| MMLU Pro | 32.40 | 33.78 | 56.30 | 54.50 | 71.10 | 66.10 |
|
| 32 |
| Average | 57.33 | 61.94 | 76.99 | 76.40 | 84.91 | 84.02 |
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
## All Resources
|
| 38 |
-
### AceMath Instruction Models
|
| 39 |
-
- [AceMath-1.5B-Instruct](https://huggingface.co/nvidia/AceMath-1.5B-Instruct), [AceMath-7B-Instruct](https://huggingface.co/nvidia/AceMath-7B-Instruct), [AceMath-72B-Instruct](https://huggingface.co/nvidia/AceMath-72B-Instruct)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
- [AceMath-7B-RM](https://huggingface.co/nvidia/AceMath-7B-RM), [AceMath-72B-RM](https://huggingface.co/nvidia/AceMath-72B-RM)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
### General Instruction Models
|
| 48 |
-
- [AceInstruct-1.5B](https://huggingface.co/nvidia/AceInstruct-1.5B), [AceInstruct-7B](https://huggingface.co/nvidia/AceInstruct-7B), [AceInstruct-72B](https://huggingface.co/nvidia/AceInstruct-72B)
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
## How to use
|
| 52 |
-
```python
|
| 53 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 54 |
-
|
| 55 |
-
model_name = "AceInstruct-72B"
|
| 56 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 57 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
| 58 |
-
|
| 59 |
-
prompt = "Tell me something about artificial intelligence."
|
| 60 |
-
messages = [{"role": "user", "content": prompt}]
|
| 61 |
-
|
| 62 |
-
text = tokenizer.apply_chat_template(
|
| 63 |
-
messages,
|
| 64 |
-
tokenize=False,
|
| 65 |
-
add_generation_prompt=True
|
| 66 |
-
)
|
| 67 |
-
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
|
| 68 |
-
|
| 69 |
-
generated_ids = model.generate(
|
| 70 |
-
**model_inputs,
|
| 71 |
-
max_new_tokens=1024
|
| 72 |
-
)
|
| 73 |
-
generated_ids = [
|
| 74 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 75 |
-
]
|
| 76 |
-
|
| 77 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 78 |
-
```
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
## Correspondence to
|
| 82 |
-
Zihan Liu ([email protected]), Yang Chen ([email protected]), Wei Ping ([email protected])
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
## Citation
|
| 86 |
-
If you find our work helpful, we’d appreciate it if you could cite us.
|
| 87 |
-
<pre>
|
| 88 |
-
@article{acemath2024,
|
| 89 |
-
title={AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling},
|
| 90 |
-
author={Liu, Zihan and Chen, Yang and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
|
| 91 |
-
journal={arXiv preprint},
|
| 92 |
-
year={2024}
|
| 93 |
-
}
|
| 94 |
-
</pre>
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
## License
|
| 98 |
-
All models in the AceInstruct family are for non-commercial use only, subject to [Terms of Use](https://openai.com/policies/row-terms-of-use/) of the data generated by OpenAI. We put the AceInstruct models under the license of [Creative Commons Attribution: Non-Commercial 4.0 International](https://spdx.org/licenses/CC-BY-NC-4.0).
|
|
|
|
| 1 |
---
|
| 2 |
+
quantized_by: LLMJapan
|
| 3 |
+
pipeline_tag: text-generation
|
| 4 |
license: cc-by-nc-4.0
|
| 5 |
language:
|
| 6 |
- en
|
|
|
|
| 7 |
tags:
|
| 8 |
- nvidia
|
| 9 |
- AceInstruct
|
|
|
|
| 11 |
- math
|
| 12 |
- general_domain
|
| 13 |
- instruct_model
|
| 14 |
+
base_model: nvidia/AceInstruct-72B
|
| 15 |
---
|
| 16 |
+
## Exllama v2 Quantizations of AceInstruct-72B by nvidia
|
| 17 |
+
|
| 18 |
+
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.2.8">turboderp's ExLlamaV2 v0.2.8</a> for quantization.
|
| 19 |
+
|
| 20 |
+
Original model: https://huggingface.co/nvidia/AceInstruct-72B
|
| 21 |
+
|
| 22 |
+
Quantization Command Example for creating other bpw quantization
|
| 23 |
+
```
|
| 24 |
+
cd {your git clone directory}
|
| 25 |
+
python convert.py -i {path to}/AceInstruct-72B -o {path to}/AceInstruct-72B/workingdir -cf {path to}/AceInstruct-72B/AceInstruct-72B-3bpw -b 3.0
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
## Prompt format
|
| 29 |
+
|
| 30 |
+
```
|
| 31 |
+
<|im_start|>system
|
| 32 |
+
{system_prompt}<|im_end|>
|
| 33 |
+
<|im_start|>user
|
| 34 |
+
{prompt}<|im_end|>
|
| 35 |
+
<|im_start|>assistant
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## How to add your system prompt
|
| 39 |
|
| 40 |
+
Copy the following json and replace the "You are AceInstruct developed by NVIDIA. You are helpful assistant." sentence with your original system prompt.
|
| 41 |
+
The default tokenizer_config.json does not have system prompt.
|
|
|
|
| 42 |
|
| 43 |
+
tokenizer_config.json
|
| 44 |
+
```
|
| 45 |
+
"chat_template": "{{- '<|im_start|>system\\nYou are AceInstruct developed by NVIDIA. You are helpful assistant.<|im_end|>\\n' }}\n {%- for message in messages %}\n{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}\n{%- endfor %}\n{%- if add_generation_prompt %}\n{{- '<|im_start|>assistant\n' }}\n{%- endif %}\n",
|
| 46 |
+
```
|
| 47 |
|
| 48 |
+
## File information
|
| 49 |
+
|
| 50 |
+
| quantization type | file size |
|
| 51 |
+
| ----------------------- | ----------: |
|
| 52 |
+
| 3.0bpw | 27.8 GiB |
|
| 53 |
|
| 54 |
## Benchmark Results
|
| 55 |
+
|
| 56 |
| | Qwen2.5-1.5B-Instruct | AceInstruct-1.5B | Qwen2.5-7B-Instruct | AceInstruct-7B | Qwen2.5-72B-Instruct | AceInstruct-72B |
|
| 57 |
| --------- |:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|
|
| 58 |
| HumanEval | 61.60 | 73.17 | 84.80 | 85.37 | 86.60 | 89.63 |
|
|
|
|
| 63 |
| MMLU Pro | 32.40 | 33.78 | 56.30 | 54.50 | 71.10 | 66.10 |
|
| 64 |
| Average | 57.33 | 61.94 | 76.99 | 76.40 | 84.91 | 84.02 |
|
| 65 |
|
| 66 |
+
## Credits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
Thanks to NVIDIA team.
|
|
|
|
| 69 |
|
| 70 |
+
---
|
| 71 |
+
license: cc-by-nc-4.0
|
| 72 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|