Update README.md
Browse files
README.md
CHANGED
|
@@ -56,9 +56,62 @@ The model was evaluated using the following metrics:
|
|
| 56 |
|
| 57 |
## How to Use
|
| 58 |
|
| 59 |
-
###
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
## How to Use
|
| 58 |
|
| 59 |
+
### Input Format
|
| 60 |
|
| 61 |
+
The model expects input data in JSON format with the following fields:
|
| 62 |
+
- "Crop Name": String
|
| 63 |
+
- "Target Yield": Numeric
|
| 64 |
+
- "Field Size": Numeric
|
| 65 |
+
- "pH (water)": Numeric
|
| 66 |
+
- "Organic Carbon": Numeric
|
| 67 |
+
- "Total Nitrogen": Numeric
|
| 68 |
+
- "Phosphorus (M3)": Numeric
|
| 69 |
+
- "Potassium (exch.)": Numeric
|
| 70 |
+
- "Soil moisture": Numeric
|
| 71 |
|
| 72 |
+
### Preprocessing Steps
|
| 73 |
+
|
| 74 |
+
1. Load your input data.
|
| 75 |
+
2. Ensure all required fields are present and in the expected format.
|
| 76 |
+
3. Handle any missing values if necessary.
|
| 77 |
+
4. Scale numerical features based on the training data.
|
| 78 |
+
5. One-hot encode categorical features (if applicable).
|
| 79 |
+
|
| 80 |
+
### Inference Procedure
|
| 81 |
+
|
| 82 |
+
#### Example Code:
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
from sklearn.externals import joblib
|
| 86 |
+
import pandas as pd
|
| 87 |
+
|
| 88 |
+
# Load the trained model
|
| 89 |
+
model = joblib.load('random_forest_model.joblib')
|
| 90 |
+
|
| 91 |
+
# Example input data
|
| 92 |
+
new_data = {
|
| 93 |
+
'Crop Name': 'apple',
|
| 94 |
+
'Target Yield': 1200.0,
|
| 95 |
+
'Field Size': 1.0,
|
| 96 |
+
'pH (water)': 5.76,
|
| 97 |
+
'Organic Carbon': 12.9,
|
| 98 |
+
'Total Nitrogen': 1.1,
|
| 99 |
+
'Phosphorus (M3)': 1.2,
|
| 100 |
+
'Potassium (exch.)': 1.7,
|
| 101 |
+
'Soil moisture': 11.4
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
# Preprocess the input data
|
| 105 |
+
input_df = pd.DataFrame([new_data])
|
| 106 |
+
|
| 107 |
+
# Ensure the same columns as in training
|
| 108 |
+
input_df = pd.get_dummies(input_df, columns=['Crop Name'])
|
| 109 |
+
for col in X.columns:
|
| 110 |
+
if col not in input_df.columns:
|
| 111 |
+
input_df[col] = 0
|
| 112 |
+
|
| 113 |
+
# Make predictions
|
| 114 |
+
predictions = model.predict(input_df)
|
| 115 |
+
|
| 116 |
+
print("Predicted nutrient needs:")
|
| 117 |
+
print(predictions)
|