This collection includes our hungarian models using the recently released multilingual ModernBERT models
			
	
	AI & ML interests
Explainable AI, Rule-based models, Rule learning with LLMs, Hallucination detection, Fact checking LLMs
Recent Activity
	View all activity
	
These are our EuroBERT fine-tunes on our translated RAGTruth datasets.
			
	
	- 
	
	
	  KRLabsOrg/lettucedect-610m-eurobert-de-v1Token Classification • 0.6B • Updated • 24 • 1
- 
	
	
	  KRLabsOrg/lettucedect-210m-eurobert-de-v1Token Classification • 0.2B • Updated • 2
- 
	
	
	  KRLabsOrg/lettucedect-610m-eurobert-fr-v1Token Classification • 0.6B • Updated • 2 • 1
- 
	
	
	  KRLabsOrg/lettucedect-610m-eurobert-cn-v1Token Classification • 0.6B • Updated • 18 • 1
This collection includes our translated training data that we've used to create multilingual hallucination detection models.
			
	
	This Collection contains  our small, Ettin-encoder (https://arxiv.org/abs/2507.11412) based models trained on synthetic and RagTruth data.
			
	
	- 
	
	
	  KRLabsOrg/tinylettuce-ettin-17m-en-bioasqToken Classification • 16.9M • Updated • 64 • 7
- 
	
	
	  KRLabsOrg/tinylettuce-ettin-68m-en-bioasqToken Classification • 68.4M • Updated • 3 • 2
- 
	
	
	  KRLabsOrg/tinylettuce-ettin-32m-en-bioasqToken Classification • 32M • Updated • 1 • 1
- 
	
	
	  KRLabsOrg/tinylettuce-ettin-68m-enToken Classification • 68.4M • Updated • 641 • 2
Trained ModernBERT (base and large) for detection hallucinations in LLM responses. The models are trained as token classifications.
			
	
	- 
	
	
	  KRLabsOrg/lettucedect-base-modernbert-en-v1Token Classification • 0.1B • Updated • 885 • 17
- 
	
	
	  KRLabsOrg/lettucedect-large-modernbert-en-v1Token Classification • 0.4B • Updated • 203 • 28
- 
	
	
	LettuceDetect: A Hallucination Detection Framework for RAG ApplicationsPaper • 2502.17125 • Published • 12
- 
	
	
	7LettuceDetect🥬Let Us Detect your hallucinations! Demo for our framework. 
This collection includes our hungarian models using the recently released multilingual ModernBERT models
			
	
	This Collection contains  our small, Ettin-encoder (https://arxiv.org/abs/2507.11412) based models trained on synthetic and RagTruth data.
			
	
	- 
	
	
	  KRLabsOrg/tinylettuce-ettin-17m-en-bioasqToken Classification • 16.9M • Updated • 64 • 7
- 
	
	
	  KRLabsOrg/tinylettuce-ettin-68m-en-bioasqToken Classification • 68.4M • Updated • 3 • 2
- 
	
	
	  KRLabsOrg/tinylettuce-ettin-32m-en-bioasqToken Classification • 32M • Updated • 1 • 1
- 
	
	
	  KRLabsOrg/tinylettuce-ettin-68m-enToken Classification • 68.4M • Updated • 641 • 2
These are our EuroBERT fine-tunes on our translated RAGTruth datasets.
			
	
	- 
	
	
	  KRLabsOrg/lettucedect-610m-eurobert-de-v1Token Classification • 0.6B • Updated • 24 • 1
- 
	
	
	  KRLabsOrg/lettucedect-210m-eurobert-de-v1Token Classification • 0.2B • Updated • 2
- 
	
	
	  KRLabsOrg/lettucedect-610m-eurobert-fr-v1Token Classification • 0.6B • Updated • 2 • 1
- 
	
	
	  KRLabsOrg/lettucedect-610m-eurobert-cn-v1Token Classification • 0.6B • Updated • 18 • 1
Trained ModernBERT (base and large) for detection hallucinations in LLM responses. The models are trained as token classifications.
			
	
	- 
	
	
	  KRLabsOrg/lettucedect-base-modernbert-en-v1Token Classification • 0.1B • Updated • 885 • 17
- 
	
	
	  KRLabsOrg/lettucedect-large-modernbert-en-v1Token Classification • 0.4B • Updated • 203 • 28
- 
	
	
	LettuceDetect: A Hallucination Detection Framework for RAG ApplicationsPaper • 2502.17125 • Published • 12
- 
	
	
	7LettuceDetect🥬Let Us Detect your hallucinations! Demo for our framework. 
This collection includes our translated training data that we've used to create multilingual hallucination detection models.