Update README.md
Browse files
README.md
CHANGED
|
@@ -1,70 +1,70 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
language: en
|
| 4 |
-
|
| 5 |
-
tags:
|
| 6 |
-
|
| 7 |
-
- sentence correction
|
| 8 |
-
|
| 9 |
-
- text2text-generation
|
| 10 |
-
|
| 11 |
-
license: cc-by-nc-sa-4.0
|
| 12 |
-
|
| 13 |
-
datasets:
|
| 14 |
-
|
| 15 |
-
- jfleg
|
| 16 |
-
|
| 17 |
-
---
|
| 18 |
-
|
| 19 |
-
# Model
|
| 20 |
-
This model utilises T5-base sentence correction pre-trained model. It was fine tuned using a modified version of the [JFLEG](https://arxiv.org/abs/1702.04066) dataset and [Happy Transformer framework](https://github.com/EricFillion/happy-transformer). This model was pre-trained for educational purposes only for correction on local Caribbean
|
| 21 |
-
.
|
| 22 |
-
___
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
# Re-training/Fine Tuning
|
| 26 |
-
|
| 27 |
-
The results of fine-tuning resulted in a final accuracy of 90%
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
# Usage
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
```python
|
| 35 |
-
|
| 36 |
-
from happytransformer import HappyTextToText, TTSettings
|
| 37 |
-
|
| 38 |
-
pre_trained_model="T5"
|
| 39 |
-
model = HappyTextToText(pre_trained_model, "KES/T5-KES")
|
| 40 |
-
|
| 41 |
-
arguments = TTSettings(num_beams=4, min_length=1)
|
| 42 |
-
sentence = "Wat iz your nam"
|
| 43 |
-
|
| 44 |
-
correction = model.generate_text("grammar: "+sentence, args=arguments)
|
| 45 |
-
if(correction.text.find(" .")):
|
| 46 |
-
correction.text=correction.text.replace(" .", ".")
|
| 47 |
-
|
| 48 |
-
print(correction.text) # Correction: "What is your name?".
|
| 49 |
-
|
| 50 |
-
```
|
| 51 |
-
_
|
| 52 |
-
# Usage with Transformers
|
| 53 |
-
|
| 54 |
-
```python
|
| 55 |
-
|
| 56 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 57 |
-
|
| 58 |
-
tokenizer = AutoTokenizer.from_pretrained("KES/T5-KES")
|
| 59 |
-
|
| 60 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-KES")
|
| 61 |
-
|
| 62 |
-
text = "I am lived with my parenmts "
|
| 63 |
-
inputs = tokenizer("grammar:"+text, truncation=True, return_tensors='pt')
|
| 64 |
-
|
| 65 |
-
output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True)
|
| 66 |
-
correction=tokenizer.batch_decode(output, skip_special_tokens=True)
|
| 67 |
-
print("".join(correction)) #Correction: I am living with my parents.
|
| 68 |
-
|
| 69 |
-
```
|
| 70 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
|
| 3 |
+
language: en
|
| 4 |
+
|
| 5 |
+
tags:
|
| 6 |
+
|
| 7 |
+
- sentence correction
|
| 8 |
+
|
| 9 |
+
- text2text-generation
|
| 10 |
+
|
| 11 |
+
license: cc-by-nc-sa-4.0
|
| 12 |
+
|
| 13 |
+
datasets:
|
| 14 |
+
|
| 15 |
+
- jfleg
|
| 16 |
+
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Model
|
| 20 |
+
This model utilises T5-base sentence correction pre-trained model. It was fine tuned using a modified version of the [JFLEG](https://arxiv.org/abs/1702.04066) dataset and [Happy Transformer framework](https://github.com/EricFillion/happy-transformer). This model was pre-trained for educational purposes only for correction on local Caribbean English Creole. For more on the Caribbean English Creole checkout the library [Caribe](https://pypi.org/project/Caribe/).
|
| 21 |
+
.
|
| 22 |
+
___
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# Re-training/Fine Tuning
|
| 26 |
+
|
| 27 |
+
The results of fine-tuning resulted in a final accuracy of 90%
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Usage
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
|
| 36 |
+
from happytransformer import HappyTextToText, TTSettings
|
| 37 |
+
|
| 38 |
+
pre_trained_model="T5"
|
| 39 |
+
model = HappyTextToText(pre_trained_model, "KES/T5-KES")
|
| 40 |
+
|
| 41 |
+
arguments = TTSettings(num_beams=4, min_length=1)
|
| 42 |
+
sentence = "Wat iz your nam"
|
| 43 |
+
|
| 44 |
+
correction = model.generate_text("grammar: "+sentence, args=arguments)
|
| 45 |
+
if(correction.text.find(" .")):
|
| 46 |
+
correction.text=correction.text.replace(" .", ".")
|
| 47 |
+
|
| 48 |
+
print(correction.text) # Correction: "What is your name?".
|
| 49 |
+
|
| 50 |
+
```
|
| 51 |
+
_
|
| 52 |
+
# Usage with Transformers
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
|
| 56 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 57 |
+
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained("KES/T5-KES")
|
| 59 |
+
|
| 60 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-KES")
|
| 61 |
+
|
| 62 |
+
text = "I am lived with my parenmts "
|
| 63 |
+
inputs = tokenizer("grammar:"+text, truncation=True, return_tensors='pt')
|
| 64 |
+
|
| 65 |
+
output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True)
|
| 66 |
+
correction=tokenizer.batch_decode(output, skip_special_tokens=True)
|
| 67 |
+
print("".join(correction)) #Correction: I am living with my parents.
|
| 68 |
+
|
| 69 |
+
```
|
| 70 |
+
|