SetFit with JohanHeinsen/Old_News_Segmentation_SBERT_V0.1
This is a SetFit model that can be used for Text Classification. This SetFit model uses JohanHeinsen/Old_News_Segmentation_SBERT_V0.1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: JohanHeinsen/Old_News_Segmentation_SBERT_V0.1
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
Evaluation
Metrics
| Label | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|
| all | 0.9434 | 0.9239 | 0.8922 | 0.9579 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("En Pige søger Tieneste hos eenlige Folk, eller hvor der er et Par Børn at passe, anvises i lille Færgestrædet Nr. 231.")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 8 | 32.1640 | 176 |
| Label | Training Sample Count |
|---|---|
| 0 | 389 |
| 1 | 227 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 12
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0011 | 1 | 0.0621 | - |
| 0.0541 | 50 | 0.2937 | - |
| 0.1082 | 100 | 0.1367 | - |
| 0.1623 | 150 | 0.037 | - |
| 0.2165 | 200 | 0.0215 | - |
| 0.2706 | 250 | 0.0165 | - |
| 0.3247 | 300 | 0.0103 | - |
| 0.3788 | 350 | 0.0134 | - |
| 0.4329 | 400 | 0.0146 | - |
| 0.4870 | 450 | 0.003 | - |
| 0.5411 | 500 | 0.0028 | - |
| 0.5952 | 550 | 0.0027 | - |
| 0.6494 | 600 | 0.0039 | - |
| 0.7035 | 650 | 0.0003 | - |
| 0.7576 | 700 | 0.0001 | - |
| 0.8117 | 750 | 0.0001 | - |
| 0.8658 | 800 | 0.0001 | - |
| 0.9199 | 850 | 0.0001 | - |
| 0.9740 | 900 | 0.0 | - |
| 1.0281 | 950 | 0.0 | - |
| 1.0823 | 1000 | 0.0 | - |
| 1.1364 | 1050 | 0.0 | - |
| 1.1905 | 1100 | 0.0 | - |
| 1.2446 | 1150 | 0.0 | - |
| 1.2987 | 1200 | 0.0 | - |
| 1.3528 | 1250 | 0.0 | - |
| 1.4069 | 1300 | 0.0 | - |
| 1.4610 | 1350 | 0.0 | - |
| 1.5152 | 1400 | 0.0 | - |
| 1.5693 | 1450 | 0.0 | - |
| 1.6234 | 1500 | 0.0 | - |
| 1.6775 | 1550 | 0.0 | - |
| 1.7316 | 1600 | 0.0 | - |
| 1.7857 | 1650 | 0.0 | - |
| 1.8398 | 1700 | 0.0 | - |
| 1.8939 | 1750 | 0.0 | - |
| 1.9481 | 1800 | 0.0 | - |
Framework Versions
- Python: 3.11.12
- SetFit: 1.1.3
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0
- Datasets: 2.19.2
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 20
Model tree for JohanHeinsen/Labour_ads_demand
Base model
CALDISS-AAU/DA-BERT_Old_News_V1Evaluation results
- Accuracy on Unknowntest set self-reported0.943
- F1 on Unknowntest set self-reported0.924
- Precision on Unknowntest set self-reported0.892
- Recall on Unknowntest set self-reported0.958