SetFit with JohanHeinsen/Old_News_Segmentation_SBERT_V0.1

This is a SetFit model that can be used for Text Classification. This SetFit model uses JohanHeinsen/Old_News_Segmentation_SBERT_V0.1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'En skikkelig Karl fra Jylland søger Condition til St. Hansdag og er at finde paa Christianshavn paa Hiørnet af Dronningensgade og Torvegagen i Kielderen i Nr. 359.'
  • 'En Amme søger Plads, eller i Mangel som Goldamme, er at finde i Nyehavn, anden Port fra Charlottenborg.'
  • 'En skikkelig Pige, som kan forevise de bedste Skudsmaale, ønsker sig en Tieneste som Frøkenpige eller Stuepige til 1ste Novbr. enten paa en Herregaard eller hos en honet Familie i Kiøbstæden. Hun anvises fra Adressecomtoiret.'
1
  • 'En skikkelig Jomfru, som forstaaer godt Madlavning, Vadsk, Reengjøren og deslige, kan faae Condition paa Vesterbro Nr. 63, men uden gode Recommendationer om Troskab og god Opførsel nytter det ikke at mælde sig.'
  • 'En Pige, som kan paatage sig et Kjøkken, kan strax faae Condition, naar hun mælder sig i Toldbodgaden Nr. 44, i Stuen.'
  • 'En Goldamme kan strax faae Condition i Kronprindsensgaden Nr. 39, 3die Sal.'

Evaluation

Metrics

Label Accuracy F1 Precision Recall
all 0.9434 0.9239 0.8922 0.9579

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("En Pige søger Tieneste hos eenlige Folk, eller hvor der er et Par Børn at passe, anvises i lille Færgestrædet Nr. 231.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 8 32.1640 176
Label Training Sample Count
0 389
1 227

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 12
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0011 1 0.0621 -
0.0541 50 0.2937 -
0.1082 100 0.1367 -
0.1623 150 0.037 -
0.2165 200 0.0215 -
0.2706 250 0.0165 -
0.3247 300 0.0103 -
0.3788 350 0.0134 -
0.4329 400 0.0146 -
0.4870 450 0.003 -
0.5411 500 0.0028 -
0.5952 550 0.0027 -
0.6494 600 0.0039 -
0.7035 650 0.0003 -
0.7576 700 0.0001 -
0.8117 750 0.0001 -
0.8658 800 0.0001 -
0.9199 850 0.0001 -
0.9740 900 0.0 -
1.0281 950 0.0 -
1.0823 1000 0.0 -
1.1364 1050 0.0 -
1.1905 1100 0.0 -
1.2446 1150 0.0 -
1.2987 1200 0.0 -
1.3528 1250 0.0 -
1.4069 1300 0.0 -
1.4610 1350 0.0 -
1.5152 1400 0.0 -
1.5693 1450 0.0 -
1.6234 1500 0.0 -
1.6775 1550 0.0 -
1.7316 1600 0.0 -
1.7857 1650 0.0 -
1.8398 1700 0.0 -
1.8939 1750 0.0 -
1.9481 1800 0.0 -

Framework Versions

  • Python: 3.11.12
  • SetFit: 1.1.3
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.7.0
  • Datasets: 2.19.2
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
20
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for JohanHeinsen/Labour_ads_demand

Evaluation results