from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) CM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class JiutianConfig(PretrainedConfig): model_type = "jiutian" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=152064, hidden_size=8192, intermediate_size=13312, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=8192, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=151645, bos_token_id=None, eos_token_id=151645, pretraining_tp=1, tie_word_embeddings=False, rope_theta=500000, rope_scaling=None, qkv_bias=True, attention_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = None self.qkv_bias = qkv_bias self.attention_dropout = attention_dropout if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )