Update README.md
Browse files
README.md
CHANGED
|
@@ -88,9 +88,9 @@ The model was trained on a dataset of texts and their respective titles, preproc
|
|
| 88 |
|
| 89 |
#### Training Hyperparameters
|
| 90 |
|
| 91 |
-
- **Batch size:**
|
| 92 |
-
- **Number of epochs:**
|
| 93 |
-
- **Learning rate:** 1e-
|
| 94 |
- **Optimizer:** Adam
|
| 95 |
- **Loss function:** Cross-Entropy Loss
|
| 96 |
|
|
@@ -117,9 +117,9 @@ Evaluation was performed using a portion of the dataset held out during training
|
|
| 117 |
|
| 118 |
The carbon footprint and energy consumption can be estimated using tools like the [Machine Learning Impact Calculator](https://mlco2.github.io/impact#compute).
|
| 119 |
|
| 120 |
-
- **Hardware Type:** GPU (NVIDIA)
|
| 121 |
-
- **Hours used:**
|
| 122 |
-
- **Compute Region:**
|
| 123 |
|
| 124 |
## Technical Specifications
|
| 125 |
|
|
|
|
| 88 |
|
| 89 |
#### Training Hyperparameters
|
| 90 |
|
| 91 |
+
- **Batch size:** 32
|
| 92 |
+
- **Number of epochs:** 9
|
| 93 |
+
- **Learning rate:** 1e-4
|
| 94 |
- **Optimizer:** Adam
|
| 95 |
- **Loss function:** Cross-Entropy Loss
|
| 96 |
|
|
|
|
| 117 |
|
| 118 |
The carbon footprint and energy consumption can be estimated using tools like the [Machine Learning Impact Calculator](https://mlco2.github.io/impact#compute).
|
| 119 |
|
| 120 |
+
- **Hardware Type:** GPU A100 (NVIDIA)
|
| 121 |
+
- **Hours used:** 0.5 H
|
| 122 |
+
- **Compute Region:** [GLICID HPC](https://www.glicid.fr/)
|
| 123 |
|
| 124 |
## Technical Specifications
|
| 125 |
|