Upload lm-boosted decoder
Browse files- .gitattributes +1 -0
- added_tokens.json +1 -0
- alphabet.json +1 -0
- config.json +108 -0
- eval.py +128 -0
- language_model/CV_8.0_3gram_correct.arpa +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +0 -0
- optimizer.pt +3 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- run_speech_recognition_ctc.py +737 -0
- scaler.pt +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- trainer_state.json +3835 -0
- training_args.bin +3 -0
- vocab.json +1 -0
.gitattributes
CHANGED
|
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
language_model/CV_8.0_3gram_correct.arpa filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"<s>": 48, "</s>": 49}
|
alphabet.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"labels": ["e", "n", "a", "i", "t", "o", "d", "r", " ", "l", "s", "h", "g", "m", "k", "v", "j", "w", "z", "u", "b", "c", "p", "f", "y", "\u00e9", "'", "x", "\u00eb", "q", "-", "\u00ea", "\u00e0", "\u00e4", "\u00e8", "\u00ef", "\u00e2", "\u00fb", "\u00f6", "\u00f4", "\u00fc", "\u00ee", "\u00e7", "\u00e6", "\u00f9", "\u0153", "\u2047", "", "<s>", "</s>"], "is_bpe": false}
|
config.json
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"adapter_kernel_size": 3,
|
| 5 |
+
"adapter_stride": 2,
|
| 6 |
+
"add_adapter": false,
|
| 7 |
+
"apply_spec_augment": true,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"Wav2Vec2ForCTC"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.1,
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"classifier_proj_size": 256,
|
| 14 |
+
"codevector_dim": 768,
|
| 15 |
+
"contrastive_logits_temperature": 0.1,
|
| 16 |
+
"conv_bias": true,
|
| 17 |
+
"conv_dim": [
|
| 18 |
+
512,
|
| 19 |
+
512,
|
| 20 |
+
512,
|
| 21 |
+
512,
|
| 22 |
+
512,
|
| 23 |
+
512,
|
| 24 |
+
512
|
| 25 |
+
],
|
| 26 |
+
"conv_kernel": [
|
| 27 |
+
10,
|
| 28 |
+
3,
|
| 29 |
+
3,
|
| 30 |
+
3,
|
| 31 |
+
3,
|
| 32 |
+
2,
|
| 33 |
+
2
|
| 34 |
+
],
|
| 35 |
+
"conv_stride": [
|
| 36 |
+
5,
|
| 37 |
+
2,
|
| 38 |
+
2,
|
| 39 |
+
2,
|
| 40 |
+
2,
|
| 41 |
+
2,
|
| 42 |
+
2
|
| 43 |
+
],
|
| 44 |
+
"ctc_loss_reduction": "mean",
|
| 45 |
+
"ctc_zero_infinity": false,
|
| 46 |
+
"diversity_loss_weight": 0.1,
|
| 47 |
+
"do_stable_layer_norm": true,
|
| 48 |
+
"eos_token_id": 2,
|
| 49 |
+
"feat_extract_activation": "gelu",
|
| 50 |
+
"feat_extract_dropout": 0.0,
|
| 51 |
+
"feat_extract_norm": "layer",
|
| 52 |
+
"feat_proj_dropout": 0.0,
|
| 53 |
+
"feat_quantizer_dropout": 0.0,
|
| 54 |
+
"final_dropout": 0.0,
|
| 55 |
+
"gradient_checkpointing": false,
|
| 56 |
+
"hidden_act": "gelu",
|
| 57 |
+
"hidden_dropout": 0.1,
|
| 58 |
+
"hidden_size": 1024,
|
| 59 |
+
"initializer_range": 0.02,
|
| 60 |
+
"intermediate_size": 4096,
|
| 61 |
+
"layer_norm_eps": 1e-05,
|
| 62 |
+
"layerdrop": 0.1,
|
| 63 |
+
"mask_feature_length": 10,
|
| 64 |
+
"mask_feature_min_masks": 0,
|
| 65 |
+
"mask_feature_prob": 0.0,
|
| 66 |
+
"mask_time_length": 10,
|
| 67 |
+
"mask_time_min_masks": 2,
|
| 68 |
+
"mask_time_prob": 0.05,
|
| 69 |
+
"model_type": "wav2vec2",
|
| 70 |
+
"num_adapter_layers": 3,
|
| 71 |
+
"num_attention_heads": 16,
|
| 72 |
+
"num_codevector_groups": 2,
|
| 73 |
+
"num_codevectors_per_group": 320,
|
| 74 |
+
"num_conv_pos_embedding_groups": 16,
|
| 75 |
+
"num_conv_pos_embeddings": 128,
|
| 76 |
+
"num_feat_extract_layers": 7,
|
| 77 |
+
"num_hidden_layers": 24,
|
| 78 |
+
"num_negatives": 100,
|
| 79 |
+
"output_hidden_size": 1024,
|
| 80 |
+
"pad_token_id": 47,
|
| 81 |
+
"proj_codevector_dim": 768,
|
| 82 |
+
"tdnn_dilation": [
|
| 83 |
+
1,
|
| 84 |
+
2,
|
| 85 |
+
3,
|
| 86 |
+
1,
|
| 87 |
+
1
|
| 88 |
+
],
|
| 89 |
+
"tdnn_dim": [
|
| 90 |
+
512,
|
| 91 |
+
512,
|
| 92 |
+
512,
|
| 93 |
+
512,
|
| 94 |
+
1500
|
| 95 |
+
],
|
| 96 |
+
"tdnn_kernel": [
|
| 97 |
+
5,
|
| 98 |
+
3,
|
| 99 |
+
3,
|
| 100 |
+
1,
|
| 101 |
+
1
|
| 102 |
+
],
|
| 103 |
+
"torch_dtype": "float32",
|
| 104 |
+
"transformers_version": "4.15.0",
|
| 105 |
+
"use_weighted_layer_sum": false,
|
| 106 |
+
"vocab_size": 48,
|
| 107 |
+
"xvector_output_dim": 512
|
| 108 |
+
}
|
eval.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import argparse
|
| 3 |
+
import re
|
| 4 |
+
from typing import Dict
|
| 5 |
+
|
| 6 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
| 7 |
+
|
| 8 |
+
from transformers import AutoFeatureExtractor, pipeline
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
| 12 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
| 13 |
+
|
| 14 |
+
log_outputs = args.log_outputs
|
| 15 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
| 16 |
+
|
| 17 |
+
# load metric
|
| 18 |
+
wer = load_metric("wer")
|
| 19 |
+
cer = load_metric("cer")
|
| 20 |
+
|
| 21 |
+
# compute metrics
|
| 22 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
| 23 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
| 24 |
+
|
| 25 |
+
# print & log results
|
| 26 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
| 27 |
+
print(result_str)
|
| 28 |
+
|
| 29 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
| 30 |
+
f.write(result_str)
|
| 31 |
+
|
| 32 |
+
# log all results in text file. Possibly interesting for analysis
|
| 33 |
+
if log_outputs is not None:
|
| 34 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
| 35 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
| 36 |
+
|
| 37 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
| 38 |
+
|
| 39 |
+
# mapping function to write output
|
| 40 |
+
def write_to_file(batch, i):
|
| 41 |
+
p.write(f"{i}" + "\n")
|
| 42 |
+
p.write(batch["prediction"] + "\n")
|
| 43 |
+
t.write(f"{i}" + "\n")
|
| 44 |
+
t.write(batch["target"] + "\n")
|
| 45 |
+
|
| 46 |
+
result.map(write_to_file, with_indices=True)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def normalize_text(text: str) -> str:
|
| 50 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
| 51 |
+
|
| 52 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
| 53 |
+
|
| 54 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
| 55 |
+
|
| 56 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
| 57 |
+
# note that order is important here!
|
| 58 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
| 59 |
+
|
| 60 |
+
for t in token_sequences_to_ignore:
|
| 61 |
+
text = " ".join(text.split(t))
|
| 62 |
+
|
| 63 |
+
return text
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def main(args):
|
| 67 |
+
# load dataset
|
| 68 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
| 69 |
+
|
| 70 |
+
# for testing: only process the first two examples as a test
|
| 71 |
+
# dataset = dataset.select(range(10))
|
| 72 |
+
|
| 73 |
+
# load processor
|
| 74 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
| 75 |
+
sampling_rate = feature_extractor.sampling_rate
|
| 76 |
+
|
| 77 |
+
# resample audio
|
| 78 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
| 79 |
+
|
| 80 |
+
# load eval pipeline
|
| 81 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
| 82 |
+
|
| 83 |
+
# map function to decode audio
|
| 84 |
+
def map_to_pred(batch):
|
| 85 |
+
prediction = asr(
|
| 86 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
batch["prediction"] = prediction["text"]
|
| 90 |
+
batch["target"] = normalize_text(batch["sentence"])
|
| 91 |
+
return batch
|
| 92 |
+
|
| 93 |
+
# run inference on all examples
|
| 94 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
| 95 |
+
|
| 96 |
+
# compute and log_results
|
| 97 |
+
# do not change function below
|
| 98 |
+
log_results(result, args)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if __name__ == "__main__":
|
| 102 |
+
parser = argparse.ArgumentParser()
|
| 103 |
+
|
| 104 |
+
parser.add_argument(
|
| 105 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
| 106 |
+
)
|
| 107 |
+
parser.add_argument(
|
| 108 |
+
"--dataset",
|
| 109 |
+
type=str,
|
| 110 |
+
required=True,
|
| 111 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
| 112 |
+
)
|
| 113 |
+
parser.add_argument(
|
| 114 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
| 115 |
+
)
|
| 116 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
| 117 |
+
parser.add_argument(
|
| 118 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
| 119 |
+
)
|
| 120 |
+
parser.add_argument(
|
| 121 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
| 122 |
+
)
|
| 123 |
+
parser.add_argument(
|
| 124 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
| 125 |
+
)
|
| 126 |
+
args = parser.parse_args()
|
| 127 |
+
|
| 128 |
+
main(args)
|
language_model/CV_8.0_3gram_correct.arpa
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eefa2428174a421e4848f01a6af0ea53607c6d0ab03190b3e7985dee09df43e6
|
| 3 |
+
size 12253807
|
language_model/attrs.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13864c200105334bc74b14c839995534074b95509bf8d083786727872bd6b244
|
| 3 |
+
size 2490452561
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 4 |
+
"feature_size": 1,
|
| 5 |
+
"padding_side": "right",
|
| 6 |
+
"padding_value": 0.0,
|
| 7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
| 8 |
+
"return_attention_mask": true,
|
| 9 |
+
"sampling_rate": 16000
|
| 10 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:953b1e8b3f3e89ad3eeea3584fb73612d35e6a7a66a2856d857e4f3457345993
|
| 3 |
+
size 1262120497
|
rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14af191b274fbff12408b4f1c107029e13ddf71394ee229655ff49c2db675fb5
|
| 3 |
+
size 14567
|
run_speech_recognition_ctc.py
ADDED
|
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
|
| 16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
| 17 |
+
|
| 18 |
+
import functools
|
| 19 |
+
import json
|
| 20 |
+
import logging
|
| 21 |
+
import os
|
| 22 |
+
import re
|
| 23 |
+
import sys
|
| 24 |
+
import warnings
|
| 25 |
+
from dataclasses import dataclass, field
|
| 26 |
+
from typing import Dict, List, Optional, Union
|
| 27 |
+
|
| 28 |
+
import datasets
|
| 29 |
+
import numpy as np
|
| 30 |
+
import torch
|
| 31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
| 32 |
+
|
| 33 |
+
import transformers
|
| 34 |
+
from transformers import (
|
| 35 |
+
AutoConfig,
|
| 36 |
+
AutoFeatureExtractor,
|
| 37 |
+
AutoModelForCTC,
|
| 38 |
+
AutoProcessor,
|
| 39 |
+
AutoTokenizer,
|
| 40 |
+
HfArgumentParser,
|
| 41 |
+
Trainer,
|
| 42 |
+
TrainingArguments,
|
| 43 |
+
Wav2Vec2Processor,
|
| 44 |
+
set_seed,
|
| 45 |
+
)
|
| 46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
| 47 |
+
from transformers.utils import check_min_version
|
| 48 |
+
from transformers.utils.versions import require_version
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
| 52 |
+
check_min_version("4.16.0.dev0")
|
| 53 |
+
|
| 54 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
logger = logging.getLogger(__name__)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def list_field(default=None, metadata=None):
|
| 61 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@dataclass
|
| 65 |
+
class ModelArguments:
|
| 66 |
+
"""
|
| 67 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
model_name_or_path: str = field(
|
| 71 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
| 72 |
+
)
|
| 73 |
+
tokenizer_name_or_path: Optional[str] = field(
|
| 74 |
+
default=None,
|
| 75 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
| 76 |
+
)
|
| 77 |
+
cache_dir: Optional[str] = field(
|
| 78 |
+
default=None,
|
| 79 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
| 80 |
+
)
|
| 81 |
+
freeze_feature_encoder: bool = field(
|
| 82 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
| 83 |
+
)
|
| 84 |
+
attention_dropout: float = field(
|
| 85 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
| 86 |
+
)
|
| 87 |
+
activation_dropout: float = field(
|
| 88 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
| 89 |
+
)
|
| 90 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
| 91 |
+
hidden_dropout: float = field(
|
| 92 |
+
default=0.0,
|
| 93 |
+
metadata={
|
| 94 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
| 95 |
+
},
|
| 96 |
+
)
|
| 97 |
+
final_dropout: float = field(
|
| 98 |
+
default=0.0,
|
| 99 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
| 100 |
+
)
|
| 101 |
+
mask_time_prob: float = field(
|
| 102 |
+
default=0.05,
|
| 103 |
+
metadata={
|
| 104 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
| 105 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
| 106 |
+
"vectors will be masked along the time axis."
|
| 107 |
+
},
|
| 108 |
+
)
|
| 109 |
+
mask_time_length: int = field(
|
| 110 |
+
default=10,
|
| 111 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
| 112 |
+
)
|
| 113 |
+
mask_feature_prob: float = field(
|
| 114 |
+
default=0.0,
|
| 115 |
+
metadata={
|
| 116 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
| 117 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
| 118 |
+
},
|
| 119 |
+
)
|
| 120 |
+
mask_feature_length: int = field(
|
| 121 |
+
default=10,
|
| 122 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
| 123 |
+
)
|
| 124 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
| 125 |
+
ctc_loss_reduction: Optional[str] = field(
|
| 126 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@dataclass
|
| 131 |
+
class DataTrainingArguments:
|
| 132 |
+
"""
|
| 133 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
| 134 |
+
|
| 135 |
+
Using `HfArgumentParser` we can turn this class
|
| 136 |
+
into argparse arguments to be able to specify them on
|
| 137 |
+
the command line.
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
dataset_name: str = field(
|
| 141 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
| 142 |
+
)
|
| 143 |
+
dataset_config_name: str = field(
|
| 144 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
| 145 |
+
)
|
| 146 |
+
train_split_name: str = field(
|
| 147 |
+
default="train+validation",
|
| 148 |
+
metadata={
|
| 149 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
| 150 |
+
},
|
| 151 |
+
)
|
| 152 |
+
eval_split_name: str = field(
|
| 153 |
+
default="test",
|
| 154 |
+
metadata={
|
| 155 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
| 156 |
+
},
|
| 157 |
+
)
|
| 158 |
+
audio_column_name: str = field(
|
| 159 |
+
default="audio",
|
| 160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
| 161 |
+
)
|
| 162 |
+
text_column_name: str = field(
|
| 163 |
+
default="text",
|
| 164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
| 165 |
+
)
|
| 166 |
+
overwrite_cache: bool = field(
|
| 167 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
| 168 |
+
)
|
| 169 |
+
preprocessing_num_workers: Optional[int] = field(
|
| 170 |
+
default=None,
|
| 171 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
| 172 |
+
)
|
| 173 |
+
max_train_samples: Optional[int] = field(
|
| 174 |
+
default=None,
|
| 175 |
+
metadata={
|
| 176 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
| 177 |
+
"value if set."
|
| 178 |
+
},
|
| 179 |
+
)
|
| 180 |
+
max_eval_samples: Optional[int] = field(
|
| 181 |
+
default=None,
|
| 182 |
+
metadata={
|
| 183 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
| 184 |
+
"value if set."
|
| 185 |
+
},
|
| 186 |
+
)
|
| 187 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
| 188 |
+
default=None,
|
| 189 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
| 190 |
+
)
|
| 191 |
+
eval_metrics: List[str] = list_field(
|
| 192 |
+
default=["wer"],
|
| 193 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
| 194 |
+
)
|
| 195 |
+
max_duration_in_seconds: float = field(
|
| 196 |
+
default=20.0,
|
| 197 |
+
metadata={
|
| 198 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
| 199 |
+
},
|
| 200 |
+
)
|
| 201 |
+
min_duration_in_seconds: float = field(
|
| 202 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
| 203 |
+
)
|
| 204 |
+
preprocessing_only: bool = field(
|
| 205 |
+
default=False,
|
| 206 |
+
metadata={
|
| 207 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
| 208 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
| 209 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
| 210 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
| 211 |
+
},
|
| 212 |
+
)
|
| 213 |
+
use_auth_token: bool = field(
|
| 214 |
+
default=False,
|
| 215 |
+
metadata={
|
| 216 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
| 217 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
| 218 |
+
},
|
| 219 |
+
)
|
| 220 |
+
unk_token: str = field(
|
| 221 |
+
default="[UNK]",
|
| 222 |
+
metadata={"help": "The unk token for the tokenizer"},
|
| 223 |
+
)
|
| 224 |
+
pad_token: str = field(
|
| 225 |
+
default="[PAD]",
|
| 226 |
+
metadata={"help": "The padding token for the tokenizer"},
|
| 227 |
+
)
|
| 228 |
+
word_delimiter_token: str = field(
|
| 229 |
+
default="|",
|
| 230 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
| 231 |
+
)
|
| 232 |
+
phoneme_language: Optional[str] = field(
|
| 233 |
+
default=None,
|
| 234 |
+
metadata={
|
| 235 |
+
"help": "The target language that should be used be"
|
| 236 |
+
" passed to the tokenizer for tokenization. Note that"
|
| 237 |
+
" this is only relevant if the model classifies the"
|
| 238 |
+
" input audio to a sequence of phoneme sequences."
|
| 239 |
+
},
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
@dataclass
|
| 244 |
+
class DataCollatorCTCWithPadding:
|
| 245 |
+
"""
|
| 246 |
+
Data collator that will dynamically pad the inputs received.
|
| 247 |
+
Args:
|
| 248 |
+
processor (:class:`~transformers.AutoProcessor`)
|
| 249 |
+
The processor used for proccessing the data.
|
| 250 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
| 251 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
| 252 |
+
among:
|
| 253 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 254 |
+
sequence if provided).
|
| 255 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
| 256 |
+
maximum acceptable input length for the model if that argument is not provided.
|
| 257 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
| 258 |
+
different lengths).
|
| 259 |
+
max_length (:obj:`int`, `optional`):
|
| 260 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
| 261 |
+
max_length_labels (:obj:`int`, `optional`):
|
| 262 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
| 263 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
| 264 |
+
If set will pad the sequence to a multiple of the provided value.
|
| 265 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
| 266 |
+
7.5 (Volta).
|
| 267 |
+
"""
|
| 268 |
+
|
| 269 |
+
processor: AutoProcessor
|
| 270 |
+
padding: Union[bool, str] = "longest"
|
| 271 |
+
pad_to_multiple_of: Optional[int] = None
|
| 272 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
| 273 |
+
|
| 274 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
| 275 |
+
# split inputs and labels since they have to be of different lenghts and need
|
| 276 |
+
# different padding methods
|
| 277 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
| 278 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
| 279 |
+
|
| 280 |
+
batch = self.processor.pad(
|
| 281 |
+
input_features,
|
| 282 |
+
padding=self.padding,
|
| 283 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
| 284 |
+
return_tensors="pt",
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
with self.processor.as_target_processor():
|
| 288 |
+
labels_batch = self.processor.pad(
|
| 289 |
+
label_features,
|
| 290 |
+
padding=self.padding,
|
| 291 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
| 292 |
+
return_tensors="pt",
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# replace padding with -100 to ignore loss correctly
|
| 296 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
| 297 |
+
|
| 298 |
+
batch["labels"] = labels
|
| 299 |
+
|
| 300 |
+
return batch
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def create_vocabulary_from_data(
|
| 304 |
+
datasets: DatasetDict,
|
| 305 |
+
word_delimiter_token: Optional[str] = None,
|
| 306 |
+
unk_token: Optional[str] = None,
|
| 307 |
+
pad_token: Optional[str] = None,
|
| 308 |
+
):
|
| 309 |
+
# Given training and test labels create vocabulary
|
| 310 |
+
def extract_all_chars(batch):
|
| 311 |
+
all_text = " ".join(batch["target_text"])
|
| 312 |
+
vocab = list(set(all_text))
|
| 313 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
| 314 |
+
|
| 315 |
+
vocabs = datasets.map(
|
| 316 |
+
extract_all_chars,
|
| 317 |
+
batched=True,
|
| 318 |
+
batch_size=-1,
|
| 319 |
+
keep_in_memory=True,
|
| 320 |
+
remove_columns=datasets["train"].column_names,
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
# take union of all unique characters in each dataset
|
| 324 |
+
vocab_set = functools.reduce(
|
| 325 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
| 329 |
+
|
| 330 |
+
# replace white space with delimiter token
|
| 331 |
+
if word_delimiter_token is not None:
|
| 332 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
| 333 |
+
del vocab_dict[" "]
|
| 334 |
+
|
| 335 |
+
# add unk and pad token
|
| 336 |
+
if unk_token is not None:
|
| 337 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
| 338 |
+
|
| 339 |
+
if pad_token is not None:
|
| 340 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
| 341 |
+
|
| 342 |
+
return vocab_dict
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def main():
|
| 346 |
+
# See all possible arguments in src/transformers/training_args.py
|
| 347 |
+
# or by passing the --help flag to this script.
|
| 348 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
| 349 |
+
|
| 350 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
| 351 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
| 352 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
| 353 |
+
# let's parse it to get our arguments.
|
| 354 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
| 355 |
+
else:
|
| 356 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
| 357 |
+
|
| 358 |
+
# Detecting last checkpoint.
|
| 359 |
+
last_checkpoint = None
|
| 360 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
| 361 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
| 362 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
| 363 |
+
raise ValueError(
|
| 364 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
| 365 |
+
"Use --overwrite_output_dir to overcome."
|
| 366 |
+
)
|
| 367 |
+
elif last_checkpoint is not None:
|
| 368 |
+
logger.info(
|
| 369 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
| 370 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
# Setup logging
|
| 374 |
+
logging.basicConfig(
|
| 375 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 376 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 377 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 378 |
+
)
|
| 379 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
| 380 |
+
|
| 381 |
+
# Log on each process the small summary:
|
| 382 |
+
logger.warning(
|
| 383 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
| 384 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
| 385 |
+
)
|
| 386 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 387 |
+
if is_main_process(training_args.local_rank):
|
| 388 |
+
transformers.utils.logging.set_verbosity_info()
|
| 389 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
| 390 |
+
|
| 391 |
+
# Set seed before initializing model.
|
| 392 |
+
set_seed(training_args.seed)
|
| 393 |
+
|
| 394 |
+
# 1. First, let's load the dataset
|
| 395 |
+
raw_datasets = DatasetDict()
|
| 396 |
+
|
| 397 |
+
if training_args.do_train:
|
| 398 |
+
raw_datasets["train"] = load_dataset(
|
| 399 |
+
data_args.dataset_name,
|
| 400 |
+
data_args.dataset_config_name,
|
| 401 |
+
split=data_args.train_split_name,
|
| 402 |
+
use_auth_token=data_args.use_auth_token,
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
| 406 |
+
raise ValueError(
|
| 407 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
| 408 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
| 409 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
| 413 |
+
raise ValueError(
|
| 414 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
| 415 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
| 416 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
if data_args.max_train_samples is not None:
|
| 420 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
| 421 |
+
|
| 422 |
+
if training_args.do_eval:
|
| 423 |
+
raw_datasets["eval"] = load_dataset(
|
| 424 |
+
data_args.dataset_name,
|
| 425 |
+
data_args.dataset_config_name,
|
| 426 |
+
split=data_args.eval_split_name,
|
| 427 |
+
use_auth_token=data_args.use_auth_token,
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
if data_args.max_eval_samples is not None:
|
| 431 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
| 432 |
+
|
| 433 |
+
# 2. We remove some special characters from the datasets
|
| 434 |
+
# that make training complicated and do not help in transcribing the speech
|
| 435 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
| 436 |
+
# that could be easily picked up by the model
|
| 437 |
+
chars_to_ignore_regex = (
|
| 438 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
| 439 |
+
)
|
| 440 |
+
text_column_name = data_args.text_column_name
|
| 441 |
+
|
| 442 |
+
def remove_special_characters(batch):
|
| 443 |
+
if chars_to_ignore_regex is not None:
|
| 444 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
| 445 |
+
else:
|
| 446 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
| 447 |
+
return batch
|
| 448 |
+
|
| 449 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
| 450 |
+
raw_datasets = raw_datasets.map(
|
| 451 |
+
remove_special_characters,
|
| 452 |
+
remove_columns=[text_column_name],
|
| 453 |
+
desc="remove special characters from datasets",
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
# save special tokens for tokenizer
|
| 457 |
+
word_delimiter_token = data_args.word_delimiter_token
|
| 458 |
+
unk_token = data_args.unk_token
|
| 459 |
+
pad_token = data_args.pad_token
|
| 460 |
+
|
| 461 |
+
# 3. Next, let's load the config as we might need it to create
|
| 462 |
+
# the tokenizer
|
| 463 |
+
# load config
|
| 464 |
+
config = AutoConfig.from_pretrained(
|
| 465 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
# 4. Next, if no tokenizer file is defined,
|
| 469 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
| 470 |
+
# the training and evaluation datasets
|
| 471 |
+
# We need to make sure that only first rank saves vocabulary
|
| 472 |
+
# make sure all processes wait until vocab is created
|
| 473 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
| 474 |
+
tokenizer_kwargs = {}
|
| 475 |
+
if tokenizer_name_or_path is None:
|
| 476 |
+
# save vocab in training output dir
|
| 477 |
+
tokenizer_name_or_path = training_args.output_dir
|
| 478 |
+
|
| 479 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
| 480 |
+
|
| 481 |
+
with training_args.main_process_first():
|
| 482 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
| 483 |
+
os.remove(vocab_file)
|
| 484 |
+
|
| 485 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
| 486 |
+
if not os.path.isfile(vocab_file):
|
| 487 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
| 488 |
+
vocab_dict = create_vocabulary_from_data(
|
| 489 |
+
raw_datasets,
|
| 490 |
+
word_delimiter_token=word_delimiter_token,
|
| 491 |
+
unk_token=unk_token,
|
| 492 |
+
pad_token=pad_token,
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
# save vocab dict to be loaded into tokenizer
|
| 496 |
+
with open(vocab_file, "w") as file:
|
| 497 |
+
json.dump(vocab_dict, file)
|
| 498 |
+
|
| 499 |
+
# if tokenizer has just been created
|
| 500 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
| 501 |
+
tokenizer_kwargs = {
|
| 502 |
+
"config": config if config.tokenizer_class is not None else None,
|
| 503 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
| 504 |
+
"unk_token": unk_token,
|
| 505 |
+
"pad_token": pad_token,
|
| 506 |
+
"word_delimiter_token": word_delimiter_token,
|
| 507 |
+
}
|
| 508 |
+
|
| 509 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
| 510 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
| 511 |
+
# one local process can concurrently download model & vocab.
|
| 512 |
+
|
| 513 |
+
# load feature_extractor and tokenizer
|
| 514 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 515 |
+
tokenizer_name_or_path,
|
| 516 |
+
use_auth_token=data_args.use_auth_token,
|
| 517 |
+
**tokenizer_kwargs,
|
| 518 |
+
)
|
| 519 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
| 520 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
# adapt config
|
| 524 |
+
config.update(
|
| 525 |
+
{
|
| 526 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
| 527 |
+
"attention_dropout": model_args.attention_dropout,
|
| 528 |
+
"hidden_dropout": model_args.hidden_dropout,
|
| 529 |
+
"final_dropout": model_args.final_dropout,
|
| 530 |
+
"mask_time_prob": model_args.mask_time_prob,
|
| 531 |
+
"mask_time_length": model_args.mask_time_length,
|
| 532 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
| 533 |
+
"mask_feature_length": model_args.mask_feature_length,
|
| 534 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
| 535 |
+
"layerdrop": model_args.layerdrop,
|
| 536 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
| 537 |
+
"pad_token_id": tokenizer.pad_token_id,
|
| 538 |
+
"vocab_size": len(tokenizer),
|
| 539 |
+
"activation_dropout": model_args.activation_dropout,
|
| 540 |
+
}
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
# create model
|
| 544 |
+
model = AutoModelForCTC.from_pretrained(
|
| 545 |
+
model_args.model_name_or_path,
|
| 546 |
+
cache_dir=model_args.cache_dir,
|
| 547 |
+
config=config,
|
| 548 |
+
use_auth_token=data_args.use_auth_token,
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
# freeze encoder
|
| 552 |
+
if model_args.freeze_feature_encoder:
|
| 553 |
+
model.freeze_feature_encoder()
|
| 554 |
+
|
| 555 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
| 556 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
| 557 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
| 558 |
+
# via the `feature_extractor`
|
| 559 |
+
|
| 560 |
+
# make sure that dataset decodes audio with correct sampling rate
|
| 561 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
| 562 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
| 563 |
+
raw_datasets = raw_datasets.cast_column(
|
| 564 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
# derive max & min input length for sample rate & max duration
|
| 568 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
| 569 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
| 570 |
+
audio_column_name = data_args.audio_column_name
|
| 571 |
+
num_workers = data_args.preprocessing_num_workers
|
| 572 |
+
|
| 573 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
| 574 |
+
phoneme_language = data_args.phoneme_language
|
| 575 |
+
|
| 576 |
+
# Preprocessing the datasets.
|
| 577 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
| 578 |
+
def prepare_dataset(batch):
|
| 579 |
+
# load audio
|
| 580 |
+
sample = batch[audio_column_name]
|
| 581 |
+
|
| 582 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
| 583 |
+
batch["input_values"] = inputs.input_values[0]
|
| 584 |
+
batch["input_length"] = len(batch["input_values"])
|
| 585 |
+
|
| 586 |
+
# encode targets
|
| 587 |
+
additional_kwargs = {}
|
| 588 |
+
if phoneme_language is not None:
|
| 589 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
| 590 |
+
|
| 591 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
| 592 |
+
return batch
|
| 593 |
+
|
| 594 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
| 595 |
+
vectorized_datasets = raw_datasets.map(
|
| 596 |
+
prepare_dataset,
|
| 597 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
| 598 |
+
num_proc=num_workers,
|
| 599 |
+
desc="preprocess datasets",
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
def is_audio_in_length_range(length):
|
| 603 |
+
return length > min_input_length and length < max_input_length
|
| 604 |
+
|
| 605 |
+
# filter data that is shorter than min_input_length
|
| 606 |
+
vectorized_datasets = vectorized_datasets.filter(
|
| 607 |
+
is_audio_in_length_range,
|
| 608 |
+
num_proc=num_workers,
|
| 609 |
+
input_columns=["input_length"],
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
# 7. Next, we can prepare the training.
|
| 613 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
| 614 |
+
# instantiate a data collator and the trainer
|
| 615 |
+
|
| 616 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
| 617 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
| 618 |
+
|
| 619 |
+
# for large datasets it is advised to run the preprocessing on a
|
| 620 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
| 621 |
+
# be a timeout when running the script in distributed mode.
|
| 622 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
| 623 |
+
# cached dataset
|
| 624 |
+
if data_args.preprocessing_only:
|
| 625 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
| 626 |
+
return
|
| 627 |
+
|
| 628 |
+
def compute_metrics(pred):
|
| 629 |
+
pred_logits = pred.predictions
|
| 630 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
| 631 |
+
|
| 632 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
| 633 |
+
|
| 634 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
| 635 |
+
# we do not want to group tokens when computing the metrics
|
| 636 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
| 637 |
+
|
| 638 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
| 639 |
+
|
| 640 |
+
return metrics
|
| 641 |
+
|
| 642 |
+
# Now save everything to be able to create a single processor later
|
| 643 |
+
if is_main_process(training_args.local_rank):
|
| 644 |
+
# save feature extractor, tokenizer and config
|
| 645 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
| 646 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
| 647 |
+
config.save_pretrained(training_args.output_dir)
|
| 648 |
+
|
| 649 |
+
try:
|
| 650 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
| 651 |
+
except (OSError, KeyError):
|
| 652 |
+
warnings.warn(
|
| 653 |
+
"Loading a processor from a feature extractor config that does not"
|
| 654 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
| 655 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
| 656 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
| 657 |
+
FutureWarning,
|
| 658 |
+
)
|
| 659 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
| 660 |
+
|
| 661 |
+
# Instantiate custom data collator
|
| 662 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
| 663 |
+
|
| 664 |
+
# Initialize Trainer
|
| 665 |
+
trainer = Trainer(
|
| 666 |
+
model=model,
|
| 667 |
+
data_collator=data_collator,
|
| 668 |
+
args=training_args,
|
| 669 |
+
compute_metrics=compute_metrics,
|
| 670 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
| 671 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
| 672 |
+
tokenizer=feature_extractor,
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
# 8. Finally, we can start training
|
| 676 |
+
|
| 677 |
+
# Training
|
| 678 |
+
if training_args.do_train:
|
| 679 |
+
|
| 680 |
+
# use last checkpoint if exist
|
| 681 |
+
if last_checkpoint is not None:
|
| 682 |
+
checkpoint = last_checkpoint
|
| 683 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
| 684 |
+
checkpoint = model_args.model_name_or_path
|
| 685 |
+
else:
|
| 686 |
+
checkpoint = None
|
| 687 |
+
|
| 688 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
| 689 |
+
trainer.save_model()
|
| 690 |
+
|
| 691 |
+
metrics = train_result.metrics
|
| 692 |
+
max_train_samples = (
|
| 693 |
+
data_args.max_train_samples
|
| 694 |
+
if data_args.max_train_samples is not None
|
| 695 |
+
else len(vectorized_datasets["train"])
|
| 696 |
+
)
|
| 697 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
| 698 |
+
|
| 699 |
+
trainer.log_metrics("train", metrics)
|
| 700 |
+
trainer.save_metrics("train", metrics)
|
| 701 |
+
trainer.save_state()
|
| 702 |
+
|
| 703 |
+
# Evaluation
|
| 704 |
+
results = {}
|
| 705 |
+
if training_args.do_eval:
|
| 706 |
+
logger.info("*** Evaluate ***")
|
| 707 |
+
metrics = trainer.evaluate()
|
| 708 |
+
max_eval_samples = (
|
| 709 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
| 710 |
+
)
|
| 711 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
| 712 |
+
|
| 713 |
+
trainer.log_metrics("eval", metrics)
|
| 714 |
+
trainer.save_metrics("eval", metrics)
|
| 715 |
+
|
| 716 |
+
# Write model card and (optionally) push to hub
|
| 717 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
| 718 |
+
kwargs = {
|
| 719 |
+
"finetuned_from": model_args.model_name_or_path,
|
| 720 |
+
"tasks": "speech-recognition",
|
| 721 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
| 722 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
| 723 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
| 724 |
+
}
|
| 725 |
+
if "common_voice" in data_args.dataset_name:
|
| 726 |
+
kwargs["language"] = config_name
|
| 727 |
+
|
| 728 |
+
if training_args.push_to_hub:
|
| 729 |
+
trainer.push_to_hub(**kwargs)
|
| 730 |
+
else:
|
| 731 |
+
trainer.create_model_card(**kwargs)
|
| 732 |
+
|
| 733 |
+
return results
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
if __name__ == "__main__":
|
| 737 |
+
main()
|
scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d1d84b098e761dbe1a7bf47d61c4d85eee1327725e6c25489fcbd7fe8775627f
|
| 3 |
+
size 559
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:10ab802c012038781dab6e6f375004396edc5d8092873b9f9fd25f37a37d2782
|
| 3 |
+
size 623
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "/dbfs/FileStore/Iskaj/Models/X-LSR_CV_60_EP/checkpoint-26800", "tokenizer_class": "Wav2Vec2CTCTokenizer", "processor_class": "Wav2Vec2ProcessorWithLM"}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,3835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": 0.4362342655658722,
|
| 3 |
+
"best_model_checkpoint": "/local_disk0/X-LSR_CV_60_EP/checkpoint-2400",
|
| 4 |
+
"epoch": 59.55555555555556,
|
| 5 |
+
"global_step": 26800,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 0.11,
|
| 12 |
+
"learning_rate": 2.9999999999999997e-05,
|
| 13 |
+
"loss": 11.3191,
|
| 14 |
+
"step": 50
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 0.22,
|
| 18 |
+
"learning_rate": 5.9999999999999995e-05,
|
| 19 |
+
"loss": 5.2444,
|
| 20 |
+
"step": 100
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.33,
|
| 24 |
+
"learning_rate": 8.999999999999999e-05,
|
| 25 |
+
"loss": 3.4938,
|
| 26 |
+
"step": 150
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.44,
|
| 30 |
+
"learning_rate": 0.00011999999999999999,
|
| 31 |
+
"loss": 3.0165,
|
| 32 |
+
"step": 200
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"epoch": 0.56,
|
| 36 |
+
"learning_rate": 0.00015,
|
| 37 |
+
"loss": 2.9377,
|
| 38 |
+
"step": 250
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.67,
|
| 42 |
+
"learning_rate": 0.00017999999999999998,
|
| 43 |
+
"loss": 2.9175,
|
| 44 |
+
"step": 300
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.78,
|
| 48 |
+
"learning_rate": 0.00020999999999999998,
|
| 49 |
+
"loss": 2.8908,
|
| 50 |
+
"step": 350
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.89,
|
| 54 |
+
"learning_rate": 0.00023999999999999998,
|
| 55 |
+
"loss": 2.8684,
|
| 56 |
+
"step": 400
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 0.89,
|
| 60 |
+
"eval_loss": 2.944436550140381,
|
| 61 |
+
"eval_runtime": 232.2253,
|
| 62 |
+
"eval_samples_per_second": 24.58,
|
| 63 |
+
"eval_steps_per_second": 3.075,
|
| 64 |
+
"eval_wer": 0.9999796528781004,
|
| 65 |
+
"step": 400
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 1.0,
|
| 69 |
+
"learning_rate": 0.00027,
|
| 70 |
+
"loss": 2.8525,
|
| 71 |
+
"step": 450
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"epoch": 1.11,
|
| 75 |
+
"learning_rate": 0.0003,
|
| 76 |
+
"loss": 2.6961,
|
| 77 |
+
"step": 500
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"epoch": 1.22,
|
| 81 |
+
"learning_rate": 0.0002994339622641509,
|
| 82 |
+
"loss": 1.6145,
|
| 83 |
+
"step": 550
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"epoch": 1.33,
|
| 87 |
+
"learning_rate": 0.00029886792452830187,
|
| 88 |
+
"loss": 1.0359,
|
| 89 |
+
"step": 600
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"epoch": 1.44,
|
| 93 |
+
"learning_rate": 0.0002983018867924528,
|
| 94 |
+
"loss": 0.8086,
|
| 95 |
+
"step": 650
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"epoch": 1.56,
|
| 99 |
+
"learning_rate": 0.00029773584905660376,
|
| 100 |
+
"loss": 0.7171,
|
| 101 |
+
"step": 700
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 1.67,
|
| 105 |
+
"learning_rate": 0.0002971698113207547,
|
| 106 |
+
"loss": 0.6152,
|
| 107 |
+
"step": 750
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 1.78,
|
| 111 |
+
"learning_rate": 0.00029660377358490565,
|
| 112 |
+
"loss": 0.5631,
|
| 113 |
+
"step": 800
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"epoch": 1.78,
|
| 117 |
+
"eval_loss": 0.641059398651123,
|
| 118 |
+
"eval_runtime": 232.9944,
|
| 119 |
+
"eval_samples_per_second": 24.498,
|
| 120 |
+
"eval_steps_per_second": 3.064,
|
| 121 |
+
"eval_wer": 0.5468289010519461,
|
| 122 |
+
"step": 800
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 1.89,
|
| 126 |
+
"learning_rate": 0.00029603773584905657,
|
| 127 |
+
"loss": 0.521,
|
| 128 |
+
"step": 850
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 2.0,
|
| 132 |
+
"learning_rate": 0.00029547169811320755,
|
| 133 |
+
"loss": 0.4953,
|
| 134 |
+
"step": 900
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"epoch": 2.11,
|
| 138 |
+
"learning_rate": 0.00029490566037735847,
|
| 139 |
+
"loss": 0.4331,
|
| 140 |
+
"step": 950
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"epoch": 2.22,
|
| 144 |
+
"learning_rate": 0.0002943396226415094,
|
| 145 |
+
"loss": 0.396,
|
| 146 |
+
"step": 1000
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 2.33,
|
| 150 |
+
"learning_rate": 0.00029377358490566036,
|
| 151 |
+
"loss": 0.4066,
|
| 152 |
+
"step": 1050
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"epoch": 2.44,
|
| 156 |
+
"learning_rate": 0.0002932075471698113,
|
| 157 |
+
"loss": 0.3839,
|
| 158 |
+
"step": 1100
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 2.56,
|
| 162 |
+
"learning_rate": 0.00029264150943396225,
|
| 163 |
+
"loss": 0.3705,
|
| 164 |
+
"step": 1150
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 2.67,
|
| 168 |
+
"learning_rate": 0.00029207547169811317,
|
| 169 |
+
"loss": 0.3707,
|
| 170 |
+
"step": 1200
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 2.67,
|
| 174 |
+
"eval_loss": 0.5500322580337524,
|
| 175 |
+
"eval_runtime": 232.2885,
|
| 176 |
+
"eval_samples_per_second": 24.573,
|
| 177 |
+
"eval_steps_per_second": 3.074,
|
| 178 |
+
"eval_wer": 0.4608012696604065,
|
| 179 |
+
"step": 1200
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"epoch": 2.78,
|
| 183 |
+
"learning_rate": 0.00029150943396226414,
|
| 184 |
+
"loss": 0.3813,
|
| 185 |
+
"step": 1250
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 2.89,
|
| 189 |
+
"learning_rate": 0.00029094339622641506,
|
| 190 |
+
"loss": 0.3572,
|
| 191 |
+
"step": 1300
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 3.0,
|
| 195 |
+
"learning_rate": 0.00029037735849056604,
|
| 196 |
+
"loss": 0.3483,
|
| 197 |
+
"step": 1350
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"epoch": 3.11,
|
| 201 |
+
"learning_rate": 0.00028981132075471696,
|
| 202 |
+
"loss": 0.2772,
|
| 203 |
+
"step": 1400
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"epoch": 3.22,
|
| 207 |
+
"learning_rate": 0.0002892452830188679,
|
| 208 |
+
"loss": 0.2977,
|
| 209 |
+
"step": 1450
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"epoch": 3.33,
|
| 213 |
+
"learning_rate": 0.00028867924528301885,
|
| 214 |
+
"loss": 0.2802,
|
| 215 |
+
"step": 1500
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"epoch": 3.44,
|
| 219 |
+
"learning_rate": 0.00028811320754716977,
|
| 220 |
+
"loss": 0.2913,
|
| 221 |
+
"step": 1550
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"epoch": 3.56,
|
| 225 |
+
"learning_rate": 0.00028754716981132074,
|
| 226 |
+
"loss": 0.2899,
|
| 227 |
+
"step": 1600
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 3.56,
|
| 231 |
+
"eval_loss": 0.5040135383605957,
|
| 232 |
+
"eval_runtime": 232.8201,
|
| 233 |
+
"eval_samples_per_second": 24.517,
|
| 234 |
+
"eval_steps_per_second": 3.067,
|
| 235 |
+
"eval_wer": 0.420412232689686,
|
| 236 |
+
"step": 1600
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"epoch": 3.67,
|
| 240 |
+
"learning_rate": 0.00028698113207547166,
|
| 241 |
+
"loss": 0.2802,
|
| 242 |
+
"step": 1650
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 3.78,
|
| 246 |
+
"learning_rate": 0.00028641509433962264,
|
| 247 |
+
"loss": 0.2769,
|
| 248 |
+
"step": 1700
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 3.89,
|
| 252 |
+
"learning_rate": 0.00028584905660377356,
|
| 253 |
+
"loss": 0.2632,
|
| 254 |
+
"step": 1750
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 4.0,
|
| 258 |
+
"learning_rate": 0.00028528301886792453,
|
| 259 |
+
"loss": 0.2784,
|
| 260 |
+
"step": 1800
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 4.11,
|
| 264 |
+
"learning_rate": 0.00028471698113207545,
|
| 265 |
+
"loss": 0.2341,
|
| 266 |
+
"step": 1850
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 4.22,
|
| 270 |
+
"learning_rate": 0.00028415094339622637,
|
| 271 |
+
"loss": 0.2346,
|
| 272 |
+
"step": 1900
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"epoch": 4.33,
|
| 276 |
+
"learning_rate": 0.00028358490566037734,
|
| 277 |
+
"loss": 0.2301,
|
| 278 |
+
"step": 1950
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 4.44,
|
| 282 |
+
"learning_rate": 0.00028301886792452826,
|
| 283 |
+
"loss": 0.2376,
|
| 284 |
+
"step": 2000
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"epoch": 4.44,
|
| 288 |
+
"eval_loss": 0.4637417495250702,
|
| 289 |
+
"eval_runtime": 233.0278,
|
| 290 |
+
"eval_samples_per_second": 24.495,
|
| 291 |
+
"eval_steps_per_second": 3.064,
|
| 292 |
+
"eval_wer": 0.3989663662074999,
|
| 293 |
+
"step": 2000
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"epoch": 4.56,
|
| 297 |
+
"learning_rate": 0.00028245283018867923,
|
| 298 |
+
"loss": 0.2474,
|
| 299 |
+
"step": 2050
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"epoch": 4.67,
|
| 303 |
+
"learning_rate": 0.00028188679245283015,
|
| 304 |
+
"loss": 0.2325,
|
| 305 |
+
"step": 2100
|
| 306 |
+
},
|
| 307 |
+
{
|
| 308 |
+
"epoch": 4.78,
|
| 309 |
+
"learning_rate": 0.00028132075471698113,
|
| 310 |
+
"loss": 0.2477,
|
| 311 |
+
"step": 2150
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 4.89,
|
| 315 |
+
"learning_rate": 0.00028075471698113205,
|
| 316 |
+
"loss": 0.2319,
|
| 317 |
+
"step": 2200
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 5.0,
|
| 321 |
+
"learning_rate": 0.000280188679245283,
|
| 322 |
+
"loss": 0.2342,
|
| 323 |
+
"step": 2250
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"epoch": 5.11,
|
| 327 |
+
"learning_rate": 0.00027962264150943394,
|
| 328 |
+
"loss": 0.2176,
|
| 329 |
+
"step": 2300
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"epoch": 5.22,
|
| 333 |
+
"learning_rate": 0.00027905660377358486,
|
| 334 |
+
"loss": 0.2015,
|
| 335 |
+
"step": 2350
|
| 336 |
+
},
|
| 337 |
+
{
|
| 338 |
+
"epoch": 5.33,
|
| 339 |
+
"learning_rate": 0.00027849056603773583,
|
| 340 |
+
"loss": 0.2063,
|
| 341 |
+
"step": 2400
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"epoch": 5.33,
|
| 345 |
+
"eval_loss": 0.4362342655658722,
|
| 346 |
+
"eval_runtime": 234.4496,
|
| 347 |
+
"eval_samples_per_second": 24.346,
|
| 348 |
+
"eval_steps_per_second": 3.045,
|
| 349 |
+
"eval_wer": 0.3932488249537103,
|
| 350 |
+
"step": 2400
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 5.44,
|
| 354 |
+
"learning_rate": 0.00027792452830188675,
|
| 355 |
+
"loss": 0.2116,
|
| 356 |
+
"step": 2450
|
| 357 |
+
},
|
| 358 |
+
{
|
| 359 |
+
"epoch": 5.56,
|
| 360 |
+
"learning_rate": 0.0002773584905660377,
|
| 361 |
+
"loss": 0.2084,
|
| 362 |
+
"step": 2500
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 5.67,
|
| 366 |
+
"learning_rate": 0.00027679245283018865,
|
| 367 |
+
"loss": 0.2122,
|
| 368 |
+
"step": 2550
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"epoch": 5.78,
|
| 372 |
+
"learning_rate": 0.0002762264150943396,
|
| 373 |
+
"loss": 0.2063,
|
| 374 |
+
"step": 2600
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 5.89,
|
| 378 |
+
"learning_rate": 0.00027566037735849054,
|
| 379 |
+
"loss": 0.1902,
|
| 380 |
+
"step": 2650
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 6.0,
|
| 384 |
+
"learning_rate": 0.0002750943396226415,
|
| 385 |
+
"loss": 0.2067,
|
| 386 |
+
"step": 2700
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"epoch": 6.11,
|
| 390 |
+
"learning_rate": 0.00027452830188679243,
|
| 391 |
+
"loss": 0.1845,
|
| 392 |
+
"step": 2750
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"epoch": 6.22,
|
| 396 |
+
"learning_rate": 0.0002739622641509434,
|
| 397 |
+
"loss": 0.1773,
|
| 398 |
+
"step": 2800
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"epoch": 6.22,
|
| 402 |
+
"eval_loss": 0.4410901367664337,
|
| 403 |
+
"eval_runtime": 235.6532,
|
| 404 |
+
"eval_samples_per_second": 24.222,
|
| 405 |
+
"eval_steps_per_second": 3.03,
|
| 406 |
+
"eval_wer": 0.3876737135532179,
|
| 407 |
+
"step": 2800
|
| 408 |
+
},
|
| 409 |
+
{
|
| 410 |
+
"epoch": 6.33,
|
| 411 |
+
"learning_rate": 0.0002733962264150943,
|
| 412 |
+
"loss": 0.1793,
|
| 413 |
+
"step": 2850
|
| 414 |
+
},
|
| 415 |
+
{
|
| 416 |
+
"epoch": 6.44,
|
| 417 |
+
"learning_rate": 0.00027283018867924524,
|
| 418 |
+
"loss": 0.1764,
|
| 419 |
+
"step": 2900
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"epoch": 6.56,
|
| 423 |
+
"learning_rate": 0.0002722641509433962,
|
| 424 |
+
"loss": 0.1882,
|
| 425 |
+
"step": 2950
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"epoch": 6.67,
|
| 429 |
+
"learning_rate": 0.00027169811320754714,
|
| 430 |
+
"loss": 0.1892,
|
| 431 |
+
"step": 3000
|
| 432 |
+
},
|
| 433 |
+
{
|
| 434 |
+
"epoch": 6.78,
|
| 435 |
+
"learning_rate": 0.0002711320754716981,
|
| 436 |
+
"loss": 0.1941,
|
| 437 |
+
"step": 3050
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 6.89,
|
| 441 |
+
"learning_rate": 0.00027056603773584903,
|
| 442 |
+
"loss": 0.1858,
|
| 443 |
+
"step": 3100
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 7.0,
|
| 447 |
+
"learning_rate": 0.00027,
|
| 448 |
+
"loss": 0.1817,
|
| 449 |
+
"step": 3150
|
| 450 |
+
},
|
| 451 |
+
{
|
| 452 |
+
"epoch": 7.11,
|
| 453 |
+
"learning_rate": 0.0002694339622641509,
|
| 454 |
+
"loss": 0.1676,
|
| 455 |
+
"step": 3200
|
| 456 |
+
},
|
| 457 |
+
{
|
| 458 |
+
"epoch": 7.11,
|
| 459 |
+
"eval_loss": 0.479378342628479,
|
| 460 |
+
"eval_runtime": 234.1851,
|
| 461 |
+
"eval_samples_per_second": 24.374,
|
| 462 |
+
"eval_steps_per_second": 3.049,
|
| 463 |
+
"eval_wer": 0.38449956253687917,
|
| 464 |
+
"step": 3200
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 7.22,
|
| 468 |
+
"learning_rate": 0.0002688679245283019,
|
| 469 |
+
"loss": 0.1728,
|
| 470 |
+
"step": 3250
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"epoch": 7.33,
|
| 474 |
+
"learning_rate": 0.0002683018867924528,
|
| 475 |
+
"loss": 0.1597,
|
| 476 |
+
"step": 3300
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"epoch": 7.44,
|
| 480 |
+
"learning_rate": 0.00026773584905660374,
|
| 481 |
+
"loss": 0.1695,
|
| 482 |
+
"step": 3350
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"epoch": 7.56,
|
| 486 |
+
"learning_rate": 0.0002671698113207547,
|
| 487 |
+
"loss": 0.1662,
|
| 488 |
+
"step": 3400
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"epoch": 7.67,
|
| 492 |
+
"learning_rate": 0.00026660377358490563,
|
| 493 |
+
"loss": 0.1612,
|
| 494 |
+
"step": 3450
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"epoch": 7.78,
|
| 498 |
+
"learning_rate": 0.0002660377358490566,
|
| 499 |
+
"loss": 0.1611,
|
| 500 |
+
"step": 3500
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 7.89,
|
| 504 |
+
"learning_rate": 0.0002654716981132075,
|
| 505 |
+
"loss": 0.1669,
|
| 506 |
+
"step": 3550
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 8.0,
|
| 510 |
+
"learning_rate": 0.0002649056603773585,
|
| 511 |
+
"loss": 0.1728,
|
| 512 |
+
"step": 3600
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"epoch": 8.0,
|
| 516 |
+
"eval_loss": 0.4429037272930145,
|
| 517 |
+
"eval_runtime": 233.3956,
|
| 518 |
+
"eval_samples_per_second": 24.456,
|
| 519 |
+
"eval_steps_per_second": 3.059,
|
| 520 |
+
"eval_wer": 0.37750015260341424,
|
| 521 |
+
"step": 3600
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 8.11,
|
| 525 |
+
"learning_rate": 0.0002643396226415094,
|
| 526 |
+
"loss": 0.1543,
|
| 527 |
+
"step": 3650
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 8.22,
|
| 531 |
+
"learning_rate": 0.0002637735849056604,
|
| 532 |
+
"loss": 0.152,
|
| 533 |
+
"step": 3700
|
| 534 |
+
},
|
| 535 |
+
{
|
| 536 |
+
"epoch": 8.33,
|
| 537 |
+
"learning_rate": 0.0002632075471698113,
|
| 538 |
+
"loss": 0.1552,
|
| 539 |
+
"step": 3750
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"epoch": 8.44,
|
| 543 |
+
"learning_rate": 0.0002626415094339622,
|
| 544 |
+
"loss": 0.16,
|
| 545 |
+
"step": 3800
|
| 546 |
+
},
|
| 547 |
+
{
|
| 548 |
+
"epoch": 8.56,
|
| 549 |
+
"learning_rate": 0.0002620754716981132,
|
| 550 |
+
"loss": 0.1645,
|
| 551 |
+
"step": 3850
|
| 552 |
+
},
|
| 553 |
+
{
|
| 554 |
+
"epoch": 8.67,
|
| 555 |
+
"learning_rate": 0.0002615094339622641,
|
| 556 |
+
"loss": 0.158,
|
| 557 |
+
"step": 3900
|
| 558 |
+
},
|
| 559 |
+
{
|
| 560 |
+
"epoch": 8.78,
|
| 561 |
+
"learning_rate": 0.0002609433962264151,
|
| 562 |
+
"loss": 0.1654,
|
| 563 |
+
"step": 3950
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 8.89,
|
| 567 |
+
"learning_rate": 0.000260377358490566,
|
| 568 |
+
"loss": 0.1556,
|
| 569 |
+
"step": 4000
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 8.89,
|
| 573 |
+
"eval_loss": 0.4799572825431824,
|
| 574 |
+
"eval_runtime": 233.7994,
|
| 575 |
+
"eval_samples_per_second": 24.414,
|
| 576 |
+
"eval_steps_per_second": 3.054,
|
| 577 |
+
"eval_wer": 0.38354324780759763,
|
| 578 |
+
"step": 4000
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"epoch": 9.0,
|
| 582 |
+
"learning_rate": 0.000259811320754717,
|
| 583 |
+
"loss": 0.1627,
|
| 584 |
+
"step": 4050
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 9.11,
|
| 588 |
+
"learning_rate": 0.0002592452830188679,
|
| 589 |
+
"loss": 0.1443,
|
| 590 |
+
"step": 4100
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 9.22,
|
| 594 |
+
"learning_rate": 0.0002586792452830189,
|
| 595 |
+
"loss": 0.1527,
|
| 596 |
+
"step": 4150
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"epoch": 9.33,
|
| 600 |
+
"learning_rate": 0.0002581132075471698,
|
| 601 |
+
"loss": 0.1516,
|
| 602 |
+
"step": 4200
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"epoch": 9.44,
|
| 606 |
+
"learning_rate": 0.0002575471698113207,
|
| 607 |
+
"loss": 0.1554,
|
| 608 |
+
"step": 4250
|
| 609 |
+
},
|
| 610 |
+
{
|
| 611 |
+
"epoch": 9.56,
|
| 612 |
+
"learning_rate": 0.0002569811320754717,
|
| 613 |
+
"loss": 0.1502,
|
| 614 |
+
"step": 4300
|
| 615 |
+
},
|
| 616 |
+
{
|
| 617 |
+
"epoch": 9.67,
|
| 618 |
+
"learning_rate": 0.0002564150943396226,
|
| 619 |
+
"loss": 0.1496,
|
| 620 |
+
"step": 4350
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"epoch": 9.78,
|
| 624 |
+
"learning_rate": 0.0002558490566037736,
|
| 625 |
+
"loss": 0.1514,
|
| 626 |
+
"step": 4400
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 9.78,
|
| 630 |
+
"eval_loss": 0.46985962986946106,
|
| 631 |
+
"eval_runtime": 235.3127,
|
| 632 |
+
"eval_samples_per_second": 24.257,
|
| 633 |
+
"eval_steps_per_second": 3.034,
|
| 634 |
+
"eval_wer": 0.3755264817791523,
|
| 635 |
+
"step": 4400
|
| 636 |
+
},
|
| 637 |
+
{
|
| 638 |
+
"epoch": 9.89,
|
| 639 |
+
"learning_rate": 0.0002552830188679245,
|
| 640 |
+
"loss": 0.1501,
|
| 641 |
+
"step": 4450
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"epoch": 10.0,
|
| 645 |
+
"learning_rate": 0.0002547169811320755,
|
| 646 |
+
"loss": 0.1464,
|
| 647 |
+
"step": 4500
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 10.11,
|
| 651 |
+
"learning_rate": 0.0002541509433962264,
|
| 652 |
+
"loss": 0.1354,
|
| 653 |
+
"step": 4550
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 10.22,
|
| 657 |
+
"learning_rate": 0.00025358490566037737,
|
| 658 |
+
"loss": 0.1315,
|
| 659 |
+
"step": 4600
|
| 660 |
+
},
|
| 661 |
+
{
|
| 662 |
+
"epoch": 10.33,
|
| 663 |
+
"learning_rate": 0.0002530188679245283,
|
| 664 |
+
"loss": 0.1365,
|
| 665 |
+
"step": 4650
|
| 666 |
+
},
|
| 667 |
+
{
|
| 668 |
+
"epoch": 10.44,
|
| 669 |
+
"learning_rate": 0.0002524528301886792,
|
| 670 |
+
"loss": 0.1399,
|
| 671 |
+
"step": 4700
|
| 672 |
+
},
|
| 673 |
+
{
|
| 674 |
+
"epoch": 10.56,
|
| 675 |
+
"learning_rate": 0.0002518867924528302,
|
| 676 |
+
"loss": 0.1351,
|
| 677 |
+
"step": 4750
|
| 678 |
+
},
|
| 679 |
+
{
|
| 680 |
+
"epoch": 10.67,
|
| 681 |
+
"learning_rate": 0.0002513207547169811,
|
| 682 |
+
"loss": 0.1405,
|
| 683 |
+
"step": 4800
|
| 684 |
+
},
|
| 685 |
+
{
|
| 686 |
+
"epoch": 10.67,
|
| 687 |
+
"eval_loss": 0.47201868891716003,
|
| 688 |
+
"eval_runtime": 234.4469,
|
| 689 |
+
"eval_samples_per_second": 24.347,
|
| 690 |
+
"eval_steps_per_second": 3.045,
|
| 691 |
+
"eval_wer": 0.3793517406962785,
|
| 692 |
+
"step": 4800
|
| 693 |
+
},
|
| 694 |
+
{
|
| 695 |
+
"epoch": 10.78,
|
| 696 |
+
"learning_rate": 0.0002507547169811321,
|
| 697 |
+
"loss": 0.1446,
|
| 698 |
+
"step": 4850
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"epoch": 10.89,
|
| 702 |
+
"learning_rate": 0.000250188679245283,
|
| 703 |
+
"loss": 0.1402,
|
| 704 |
+
"step": 4900
|
| 705 |
+
},
|
| 706 |
+
{
|
| 707 |
+
"epoch": 11.0,
|
| 708 |
+
"learning_rate": 0.00024962264150943397,
|
| 709 |
+
"loss": 0.1417,
|
| 710 |
+
"step": 4950
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 11.11,
|
| 714 |
+
"learning_rate": 0.0002490566037735849,
|
| 715 |
+
"loss": 0.1326,
|
| 716 |
+
"step": 5000
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 11.22,
|
| 720 |
+
"learning_rate": 0.00024849056603773586,
|
| 721 |
+
"loss": 0.1409,
|
| 722 |
+
"step": 5050
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"epoch": 11.33,
|
| 726 |
+
"learning_rate": 0.0002479245283018868,
|
| 727 |
+
"loss": 0.1279,
|
| 728 |
+
"step": 5100
|
| 729 |
+
},
|
| 730 |
+
{
|
| 731 |
+
"epoch": 11.44,
|
| 732 |
+
"learning_rate": 0.0002473584905660377,
|
| 733 |
+
"loss": 0.1333,
|
| 734 |
+
"step": 5150
|
| 735 |
+
},
|
| 736 |
+
{
|
| 737 |
+
"epoch": 11.56,
|
| 738 |
+
"learning_rate": 0.0002467924528301887,
|
| 739 |
+
"loss": 0.1317,
|
| 740 |
+
"step": 5200
|
| 741 |
+
},
|
| 742 |
+
{
|
| 743 |
+
"epoch": 11.56,
|
| 744 |
+
"eval_loss": 0.5062007904052734,
|
| 745 |
+
"eval_runtime": 233.2872,
|
| 746 |
+
"eval_samples_per_second": 24.468,
|
| 747 |
+
"eval_steps_per_second": 3.061,
|
| 748 |
+
"eval_wer": 0.3787006327954911,
|
| 749 |
+
"step": 5200
|
| 750 |
+
},
|
| 751 |
+
{
|
| 752 |
+
"epoch": 11.67,
|
| 753 |
+
"learning_rate": 0.0002462264150943396,
|
| 754 |
+
"loss": 0.1309,
|
| 755 |
+
"step": 5250
|
| 756 |
+
},
|
| 757 |
+
{
|
| 758 |
+
"epoch": 11.78,
|
| 759 |
+
"learning_rate": 0.00024566037735849057,
|
| 760 |
+
"loss": 0.1344,
|
| 761 |
+
"step": 5300
|
| 762 |
+
},
|
| 763 |
+
{
|
| 764 |
+
"epoch": 11.89,
|
| 765 |
+
"learning_rate": 0.0002450943396226415,
|
| 766 |
+
"loss": 0.1339,
|
| 767 |
+
"step": 5350
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"epoch": 12.0,
|
| 771 |
+
"learning_rate": 0.00024452830188679246,
|
| 772 |
+
"loss": 0.1403,
|
| 773 |
+
"step": 5400
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 12.11,
|
| 777 |
+
"learning_rate": 0.00024396226415094338,
|
| 778 |
+
"loss": 0.1208,
|
| 779 |
+
"step": 5450
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 12.22,
|
| 783 |
+
"learning_rate": 0.00024339622641509433,
|
| 784 |
+
"loss": 0.1278,
|
| 785 |
+
"step": 5500
|
| 786 |
+
},
|
| 787 |
+
{
|
| 788 |
+
"epoch": 12.33,
|
| 789 |
+
"learning_rate": 0.00024283018867924527,
|
| 790 |
+
"loss": 0.1148,
|
| 791 |
+
"step": 5550
|
| 792 |
+
},
|
| 793 |
+
{
|
| 794 |
+
"epoch": 12.44,
|
| 795 |
+
"learning_rate": 0.00024226415094339622,
|
| 796 |
+
"loss": 0.1204,
|
| 797 |
+
"step": 5600
|
| 798 |
+
},
|
| 799 |
+
{
|
| 800 |
+
"epoch": 12.44,
|
| 801 |
+
"eval_loss": 0.4777355492115021,
|
| 802 |
+
"eval_runtime": 233.4682,
|
| 803 |
+
"eval_samples_per_second": 24.449,
|
| 804 |
+
"eval_steps_per_second": 3.058,
|
| 805 |
+
"eval_wer": 0.36860846033328587,
|
| 806 |
+
"step": 5600
|
| 807 |
+
},
|
| 808 |
+
{
|
| 809 |
+
"epoch": 12.56,
|
| 810 |
+
"learning_rate": 0.00024169811320754717,
|
| 811 |
+
"loss": 0.1237,
|
| 812 |
+
"step": 5650
|
| 813 |
+
},
|
| 814 |
+
{
|
| 815 |
+
"epoch": 12.67,
|
| 816 |
+
"learning_rate": 0.0002411320754716981,
|
| 817 |
+
"loss": 0.124,
|
| 818 |
+
"step": 5700
|
| 819 |
+
},
|
| 820 |
+
{
|
| 821 |
+
"epoch": 12.78,
|
| 822 |
+
"learning_rate": 0.00024056603773584906,
|
| 823 |
+
"loss": 0.1358,
|
| 824 |
+
"step": 5750
|
| 825 |
+
},
|
| 826 |
+
{
|
| 827 |
+
"epoch": 12.89,
|
| 828 |
+
"learning_rate": 0.00023999999999999998,
|
| 829 |
+
"loss": 0.1243,
|
| 830 |
+
"step": 5800
|
| 831 |
+
},
|
| 832 |
+
{
|
| 833 |
+
"epoch": 13.0,
|
| 834 |
+
"learning_rate": 0.00023943396226415093,
|
| 835 |
+
"loss": 0.1255,
|
| 836 |
+
"step": 5850
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 13.11,
|
| 840 |
+
"learning_rate": 0.00023886792452830187,
|
| 841 |
+
"loss": 0.1158,
|
| 842 |
+
"step": 5900
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 13.22,
|
| 846 |
+
"learning_rate": 0.00023830188679245282,
|
| 847 |
+
"loss": 0.1135,
|
| 848 |
+
"step": 5950
|
| 849 |
+
},
|
| 850 |
+
{
|
| 851 |
+
"epoch": 13.33,
|
| 852 |
+
"learning_rate": 0.00023773584905660377,
|
| 853 |
+
"loss": 0.12,
|
| 854 |
+
"step": 6000
|
| 855 |
+
},
|
| 856 |
+
{
|
| 857 |
+
"epoch": 13.33,
|
| 858 |
+
"eval_loss": 0.5171375870704651,
|
| 859 |
+
"eval_runtime": 233.056,
|
| 860 |
+
"eval_samples_per_second": 24.492,
|
| 861 |
+
"eval_steps_per_second": 3.064,
|
| 862 |
+
"eval_wer": 0.3718233055934238,
|
| 863 |
+
"step": 6000
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 13.44,
|
| 867 |
+
"learning_rate": 0.0002371698113207547,
|
| 868 |
+
"loss": 0.1218,
|
| 869 |
+
"step": 6050
|
| 870 |
+
},
|
| 871 |
+
{
|
| 872 |
+
"epoch": 13.56,
|
| 873 |
+
"learning_rate": 0.00023660377358490566,
|
| 874 |
+
"loss": 0.1244,
|
| 875 |
+
"step": 6100
|
| 876 |
+
},
|
| 877 |
+
{
|
| 878 |
+
"epoch": 13.67,
|
| 879 |
+
"learning_rate": 0.0002360377358490566,
|
| 880 |
+
"loss": 0.1238,
|
| 881 |
+
"step": 6150
|
| 882 |
+
},
|
| 883 |
+
{
|
| 884 |
+
"epoch": 13.78,
|
| 885 |
+
"learning_rate": 0.00023547169811320755,
|
| 886 |
+
"loss": 0.1188,
|
| 887 |
+
"step": 6200
|
| 888 |
+
},
|
| 889 |
+
{
|
| 890 |
+
"epoch": 13.89,
|
| 891 |
+
"learning_rate": 0.0002349056603773585,
|
| 892 |
+
"loss": 0.1167,
|
| 893 |
+
"step": 6250
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"epoch": 14.0,
|
| 897 |
+
"learning_rate": 0.00023433962264150942,
|
| 898 |
+
"loss": 0.1212,
|
| 899 |
+
"step": 6300
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 14.11,
|
| 903 |
+
"learning_rate": 0.00023377358490566036,
|
| 904 |
+
"loss": 0.1209,
|
| 905 |
+
"step": 6350
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 14.22,
|
| 909 |
+
"learning_rate": 0.0002332075471698113,
|
| 910 |
+
"loss": 0.1176,
|
| 911 |
+
"step": 6400
|
| 912 |
+
},
|
| 913 |
+
{
|
| 914 |
+
"epoch": 14.22,
|
| 915 |
+
"eval_loss": 0.5209046602249146,
|
| 916 |
+
"eval_runtime": 232.7218,
|
| 917 |
+
"eval_samples_per_second": 24.527,
|
| 918 |
+
"eval_steps_per_second": 3.068,
|
| 919 |
+
"eval_wer": 0.37357315807679004,
|
| 920 |
+
"step": 6400
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 14.33,
|
| 924 |
+
"learning_rate": 0.00023264150943396226,
|
| 925 |
+
"loss": 0.1108,
|
| 926 |
+
"step": 6450
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 14.44,
|
| 930 |
+
"learning_rate": 0.0002320754716981132,
|
| 931 |
+
"loss": 0.1201,
|
| 932 |
+
"step": 6500
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"epoch": 14.56,
|
| 936 |
+
"learning_rate": 0.00023150943396226415,
|
| 937 |
+
"loss": 0.1135,
|
| 938 |
+
"step": 6550
|
| 939 |
+
},
|
| 940 |
+
{
|
| 941 |
+
"epoch": 14.67,
|
| 942 |
+
"learning_rate": 0.0002309433962264151,
|
| 943 |
+
"loss": 0.111,
|
| 944 |
+
"step": 6600
|
| 945 |
+
},
|
| 946 |
+
{
|
| 947 |
+
"epoch": 14.78,
|
| 948 |
+
"learning_rate": 0.00023037735849056604,
|
| 949 |
+
"loss": 0.1169,
|
| 950 |
+
"step": 6650
|
| 951 |
+
},
|
| 952 |
+
{
|
| 953 |
+
"epoch": 14.89,
|
| 954 |
+
"learning_rate": 0.000229811320754717,
|
| 955 |
+
"loss": 0.12,
|
| 956 |
+
"step": 6700
|
| 957 |
+
},
|
| 958 |
+
{
|
| 959 |
+
"epoch": 15.0,
|
| 960 |
+
"learning_rate": 0.0002292452830188679,
|
| 961 |
+
"loss": 0.1145,
|
| 962 |
+
"step": 6750
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 15.11,
|
| 966 |
+
"learning_rate": 0.00022867924528301886,
|
| 967 |
+
"loss": 0.1102,
|
| 968 |
+
"step": 6800
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 15.11,
|
| 972 |
+
"eval_loss": 0.5242590308189392,
|
| 973 |
+
"eval_runtime": 233.3294,
|
| 974 |
+
"eval_samples_per_second": 24.463,
|
| 975 |
+
"eval_steps_per_second": 3.06,
|
| 976 |
+
"eval_wer": 0.37780535943190835,
|
| 977 |
+
"step": 6800
|
| 978 |
+
},
|
| 979 |
+
{
|
| 980 |
+
"epoch": 15.22,
|
| 981 |
+
"learning_rate": 0.0002281132075471698,
|
| 982 |
+
"loss": 0.0994,
|
| 983 |
+
"step": 6850
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 15.33,
|
| 987 |
+
"learning_rate": 0.00022754716981132075,
|
| 988 |
+
"loss": 0.1196,
|
| 989 |
+
"step": 6900
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 15.44,
|
| 993 |
+
"learning_rate": 0.0002269811320754717,
|
| 994 |
+
"loss": 0.1125,
|
| 995 |
+
"step": 6950
|
| 996 |
+
},
|
| 997 |
+
{
|
| 998 |
+
"epoch": 15.56,
|
| 999 |
+
"learning_rate": 0.00022641509433962264,
|
| 1000 |
+
"loss": 0.1122,
|
| 1001 |
+
"step": 7000
|
| 1002 |
+
},
|
| 1003 |
+
{
|
| 1004 |
+
"epoch": 15.67,
|
| 1005 |
+
"learning_rate": 0.0002258490566037736,
|
| 1006 |
+
"loss": 0.1235,
|
| 1007 |
+
"step": 7050
|
| 1008 |
+
},
|
| 1009 |
+
{
|
| 1010 |
+
"epoch": 15.78,
|
| 1011 |
+
"learning_rate": 0.00022528301886792453,
|
| 1012 |
+
"loss": 0.1088,
|
| 1013 |
+
"step": 7100
|
| 1014 |
+
},
|
| 1015 |
+
{
|
| 1016 |
+
"epoch": 15.89,
|
| 1017 |
+
"learning_rate": 0.00022471698113207543,
|
| 1018 |
+
"loss": 0.1089,
|
| 1019 |
+
"step": 7150
|
| 1020 |
+
},
|
| 1021 |
+
{
|
| 1022 |
+
"epoch": 16.0,
|
| 1023 |
+
"learning_rate": 0.00022415094339622637,
|
| 1024 |
+
"loss": 0.1097,
|
| 1025 |
+
"step": 7200
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 16.0,
|
| 1029 |
+
"eval_loss": 0.4982779622077942,
|
| 1030 |
+
"eval_runtime": 233.2014,
|
| 1031 |
+
"eval_samples_per_second": 24.477,
|
| 1032 |
+
"eval_steps_per_second": 3.062,
|
| 1033 |
+
"eval_wer": 0.3620159928378131,
|
| 1034 |
+
"step": 7200
|
| 1035 |
+
},
|
| 1036 |
+
{
|
| 1037 |
+
"epoch": 16.11,
|
| 1038 |
+
"learning_rate": 0.00022358490566037732,
|
| 1039 |
+
"loss": 0.1023,
|
| 1040 |
+
"step": 7250
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 16.22,
|
| 1044 |
+
"learning_rate": 0.00022301886792452827,
|
| 1045 |
+
"loss": 0.097,
|
| 1046 |
+
"step": 7300
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 16.33,
|
| 1050 |
+
"learning_rate": 0.0002224528301886792,
|
| 1051 |
+
"loss": 0.1002,
|
| 1052 |
+
"step": 7350
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 16.44,
|
| 1056 |
+
"learning_rate": 0.00022188679245283016,
|
| 1057 |
+
"loss": 0.1051,
|
| 1058 |
+
"step": 7400
|
| 1059 |
+
},
|
| 1060 |
+
{
|
| 1061 |
+
"epoch": 16.56,
|
| 1062 |
+
"learning_rate": 0.0002213207547169811,
|
| 1063 |
+
"loss": 0.1114,
|
| 1064 |
+
"step": 7450
|
| 1065 |
+
},
|
| 1066 |
+
{
|
| 1067 |
+
"epoch": 16.67,
|
| 1068 |
+
"learning_rate": 0.00022075471698113205,
|
| 1069 |
+
"loss": 0.0984,
|
| 1070 |
+
"step": 7500
|
| 1071 |
+
},
|
| 1072 |
+
{
|
| 1073 |
+
"epoch": 16.78,
|
| 1074 |
+
"learning_rate": 0.00022018867924528297,
|
| 1075 |
+
"loss": 0.1121,
|
| 1076 |
+
"step": 7550
|
| 1077 |
+
},
|
| 1078 |
+
{
|
| 1079 |
+
"epoch": 16.89,
|
| 1080 |
+
"learning_rate": 0.00021962264150943392,
|
| 1081 |
+
"loss": 0.1091,
|
| 1082 |
+
"step": 7600
|
| 1083 |
+
},
|
| 1084 |
+
{
|
| 1085 |
+
"epoch": 16.89,
|
| 1086 |
+
"eval_loss": 0.4976480007171631,
|
| 1087 |
+
"eval_runtime": 232.5964,
|
| 1088 |
+
"eval_samples_per_second": 24.54,
|
| 1089 |
+
"eval_steps_per_second": 3.07,
|
| 1090 |
+
"eval_wer": 0.366166805705333,
|
| 1091 |
+
"step": 7600
|
| 1092 |
+
},
|
| 1093 |
+
{
|
| 1094 |
+
"epoch": 17.0,
|
| 1095 |
+
"learning_rate": 0.00021905660377358486,
|
| 1096 |
+
"loss": 0.1061,
|
| 1097 |
+
"step": 7650
|
| 1098 |
+
},
|
| 1099 |
+
{
|
| 1100 |
+
"epoch": 17.11,
|
| 1101 |
+
"learning_rate": 0.0002184905660377358,
|
| 1102 |
+
"loss": 0.0962,
|
| 1103 |
+
"step": 7700
|
| 1104 |
+
},
|
| 1105 |
+
{
|
| 1106 |
+
"epoch": 17.22,
|
| 1107 |
+
"learning_rate": 0.00021792452830188676,
|
| 1108 |
+
"loss": 0.101,
|
| 1109 |
+
"step": 7750
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 17.33,
|
| 1113 |
+
"learning_rate": 0.0002173584905660377,
|
| 1114 |
+
"loss": 0.1109,
|
| 1115 |
+
"step": 7800
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 17.44,
|
| 1119 |
+
"learning_rate": 0.00021679245283018865,
|
| 1120 |
+
"loss": 0.1021,
|
| 1121 |
+
"step": 7850
|
| 1122 |
+
},
|
| 1123 |
+
{
|
| 1124 |
+
"epoch": 17.56,
|
| 1125 |
+
"learning_rate": 0.0002162264150943396,
|
| 1126 |
+
"loss": 0.1011,
|
| 1127 |
+
"step": 7900
|
| 1128 |
+
},
|
| 1129 |
+
{
|
| 1130 |
+
"epoch": 17.67,
|
| 1131 |
+
"learning_rate": 0.00021566037735849054,
|
| 1132 |
+
"loss": 0.0992,
|
| 1133 |
+
"step": 7950
|
| 1134 |
+
},
|
| 1135 |
+
{
|
| 1136 |
+
"epoch": 17.78,
|
| 1137 |
+
"learning_rate": 0.00021509433962264146,
|
| 1138 |
+
"loss": 0.104,
|
| 1139 |
+
"step": 8000
|
| 1140 |
+
},
|
| 1141 |
+
{
|
| 1142 |
+
"epoch": 17.78,
|
| 1143 |
+
"eval_loss": 0.5483397245407104,
|
| 1144 |
+
"eval_runtime": 232.4366,
|
| 1145 |
+
"eval_samples_per_second": 24.557,
|
| 1146 |
+
"eval_steps_per_second": 3.072,
|
| 1147 |
+
"eval_wer": 0.3651901438541518,
|
| 1148 |
+
"step": 8000
|
| 1149 |
+
},
|
| 1150 |
+
{
|
| 1151 |
+
"epoch": 17.89,
|
| 1152 |
+
"learning_rate": 0.0002145283018867924,
|
| 1153 |
+
"loss": 0.1047,
|
| 1154 |
+
"step": 8050
|
| 1155 |
+
},
|
| 1156 |
+
{
|
| 1157 |
+
"epoch": 18.0,
|
| 1158 |
+
"learning_rate": 0.00021396226415094336,
|
| 1159 |
+
"loss": 0.1026,
|
| 1160 |
+
"step": 8100
|
| 1161 |
+
},
|
| 1162 |
+
{
|
| 1163 |
+
"epoch": 18.11,
|
| 1164 |
+
"learning_rate": 0.0002133962264150943,
|
| 1165 |
+
"loss": 0.0929,
|
| 1166 |
+
"step": 8150
|
| 1167 |
+
},
|
| 1168 |
+
{
|
| 1169 |
+
"epoch": 18.22,
|
| 1170 |
+
"learning_rate": 0.00021283018867924525,
|
| 1171 |
+
"loss": 0.0933,
|
| 1172 |
+
"step": 8200
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 18.33,
|
| 1176 |
+
"learning_rate": 0.0002122641509433962,
|
| 1177 |
+
"loss": 0.0971,
|
| 1178 |
+
"step": 8250
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 18.44,
|
| 1182 |
+
"learning_rate": 0.00021169811320754714,
|
| 1183 |
+
"loss": 0.097,
|
| 1184 |
+
"step": 8300
|
| 1185 |
+
},
|
| 1186 |
+
{
|
| 1187 |
+
"epoch": 18.56,
|
| 1188 |
+
"learning_rate": 0.0002111320754716981,
|
| 1189 |
+
"loss": 0.097,
|
| 1190 |
+
"step": 8350
|
| 1191 |
+
},
|
| 1192 |
+
{
|
| 1193 |
+
"epoch": 18.67,
|
| 1194 |
+
"learning_rate": 0.00021056603773584904,
|
| 1195 |
+
"loss": 0.1014,
|
| 1196 |
+
"step": 8400
|
| 1197 |
+
},
|
| 1198 |
+
{
|
| 1199 |
+
"epoch": 18.67,
|
| 1200 |
+
"eval_loss": 0.5109674334526062,
|
| 1201 |
+
"eval_runtime": 233.1396,
|
| 1202 |
+
"eval_samples_per_second": 24.483,
|
| 1203 |
+
"eval_steps_per_second": 3.063,
|
| 1204 |
+
"eval_wer": 0.3620159928378131,
|
| 1205 |
+
"step": 8400
|
| 1206 |
+
},
|
| 1207 |
+
{
|
| 1208 |
+
"epoch": 18.78,
|
| 1209 |
+
"learning_rate": 0.00020999999999999998,
|
| 1210 |
+
"loss": 0.0936,
|
| 1211 |
+
"step": 8450
|
| 1212 |
+
},
|
| 1213 |
+
{
|
| 1214 |
+
"epoch": 18.89,
|
| 1215 |
+
"learning_rate": 0.0002094339622641509,
|
| 1216 |
+
"loss": 0.0948,
|
| 1217 |
+
"step": 8500
|
| 1218 |
+
},
|
| 1219 |
+
{
|
| 1220 |
+
"epoch": 19.0,
|
| 1221 |
+
"learning_rate": 0.00020886792452830185,
|
| 1222 |
+
"loss": 0.0928,
|
| 1223 |
+
"step": 8550
|
| 1224 |
+
},
|
| 1225 |
+
{
|
| 1226 |
+
"epoch": 19.11,
|
| 1227 |
+
"learning_rate": 0.0002083018867924528,
|
| 1228 |
+
"loss": 0.0912,
|
| 1229 |
+
"step": 8600
|
| 1230 |
+
},
|
| 1231 |
+
{
|
| 1232 |
+
"epoch": 19.22,
|
| 1233 |
+
"learning_rate": 0.00020773584905660374,
|
| 1234 |
+
"loss": 0.0918,
|
| 1235 |
+
"step": 8650
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 19.33,
|
| 1239 |
+
"learning_rate": 0.0002071698113207547,
|
| 1240 |
+
"loss": 0.0902,
|
| 1241 |
+
"step": 8700
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 19.44,
|
| 1245 |
+
"learning_rate": 0.00020660377358490563,
|
| 1246 |
+
"loss": 0.0961,
|
| 1247 |
+
"step": 8750
|
| 1248 |
+
},
|
| 1249 |
+
{
|
| 1250 |
+
"epoch": 19.56,
|
| 1251 |
+
"learning_rate": 0.00020603773584905658,
|
| 1252 |
+
"loss": 0.0921,
|
| 1253 |
+
"step": 8800
|
| 1254 |
+
},
|
| 1255 |
+
{
|
| 1256 |
+
"epoch": 19.56,
|
| 1257 |
+
"eval_loss": 0.4945477545261383,
|
| 1258 |
+
"eval_runtime": 232.6384,
|
| 1259 |
+
"eval_samples_per_second": 24.536,
|
| 1260 |
+
"eval_steps_per_second": 3.069,
|
| 1261 |
+
"eval_wer": 0.3609375953771339,
|
| 1262 |
+
"step": 8800
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 19.67,
|
| 1266 |
+
"learning_rate": 0.00020547169811320753,
|
| 1267 |
+
"loss": 0.0957,
|
| 1268 |
+
"step": 8850
|
| 1269 |
+
},
|
| 1270 |
+
{
|
| 1271 |
+
"epoch": 19.78,
|
| 1272 |
+
"learning_rate": 0.00020491698113207546,
|
| 1273 |
+
"loss": 0.0958,
|
| 1274 |
+
"step": 8900
|
| 1275 |
+
},
|
| 1276 |
+
{
|
| 1277 |
+
"epoch": 19.89,
|
| 1278 |
+
"learning_rate": 0.0002043509433962264,
|
| 1279 |
+
"loss": 0.0952,
|
| 1280 |
+
"step": 8950
|
| 1281 |
+
},
|
| 1282 |
+
{
|
| 1283 |
+
"epoch": 20.0,
|
| 1284 |
+
"learning_rate": 0.00020378490566037735,
|
| 1285 |
+
"loss": 0.0847,
|
| 1286 |
+
"step": 9000
|
| 1287 |
+
},
|
| 1288 |
+
{
|
| 1289 |
+
"epoch": 20.11,
|
| 1290 |
+
"learning_rate": 0.00020321886792452827,
|
| 1291 |
+
"loss": 0.0921,
|
| 1292 |
+
"step": 9050
|
| 1293 |
+
},
|
| 1294 |
+
{
|
| 1295 |
+
"epoch": 20.22,
|
| 1296 |
+
"learning_rate": 0.00020265283018867922,
|
| 1297 |
+
"loss": 0.0885,
|
| 1298 |
+
"step": 9100
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 20.33,
|
| 1302 |
+
"learning_rate": 0.00020208679245283017,
|
| 1303 |
+
"loss": 0.0881,
|
| 1304 |
+
"step": 9150
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 20.44,
|
| 1308 |
+
"learning_rate": 0.0002015207547169811,
|
| 1309 |
+
"loss": 0.0943,
|
| 1310 |
+
"step": 9200
|
| 1311 |
+
},
|
| 1312 |
+
{
|
| 1313 |
+
"epoch": 20.44,
|
| 1314 |
+
"eval_loss": 0.5395381450653076,
|
| 1315 |
+
"eval_runtime": 232.8056,
|
| 1316 |
+
"eval_samples_per_second": 24.518,
|
| 1317 |
+
"eval_steps_per_second": 3.067,
|
| 1318 |
+
"eval_wer": 0.36470181292856124,
|
| 1319 |
+
"step": 9200
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 20.56,
|
| 1323 |
+
"learning_rate": 0.00020095471698113206,
|
| 1324 |
+
"loss": 0.0888,
|
| 1325 |
+
"step": 9250
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"epoch": 20.67,
|
| 1329 |
+
"learning_rate": 0.000200388679245283,
|
| 1330 |
+
"loss": 0.0894,
|
| 1331 |
+
"step": 9300
|
| 1332 |
+
},
|
| 1333 |
+
{
|
| 1334 |
+
"epoch": 20.78,
|
| 1335 |
+
"learning_rate": 0.00019982264150943395,
|
| 1336 |
+
"loss": 0.0883,
|
| 1337 |
+
"step": 9350
|
| 1338 |
+
},
|
| 1339 |
+
{
|
| 1340 |
+
"epoch": 20.89,
|
| 1341 |
+
"learning_rate": 0.0001992566037735849,
|
| 1342 |
+
"loss": 0.0873,
|
| 1343 |
+
"step": 9400
|
| 1344 |
+
},
|
| 1345 |
+
{
|
| 1346 |
+
"epoch": 21.0,
|
| 1347 |
+
"learning_rate": 0.00019869056603773584,
|
| 1348 |
+
"loss": 0.095,
|
| 1349 |
+
"step": 9450
|
| 1350 |
+
},
|
| 1351 |
+
{
|
| 1352 |
+
"epoch": 21.11,
|
| 1353 |
+
"learning_rate": 0.00019812452830188676,
|
| 1354 |
+
"loss": 0.087,
|
| 1355 |
+
"step": 9500
|
| 1356 |
+
},
|
| 1357 |
+
{
|
| 1358 |
+
"epoch": 21.22,
|
| 1359 |
+
"learning_rate": 0.0001975584905660377,
|
| 1360 |
+
"loss": 0.0795,
|
| 1361 |
+
"step": 9550
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 21.33,
|
| 1365 |
+
"learning_rate": 0.00019699245283018866,
|
| 1366 |
+
"loss": 0.0877,
|
| 1367 |
+
"step": 9600
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 21.33,
|
| 1371 |
+
"eval_loss": 0.516017735004425,
|
| 1372 |
+
"eval_runtime": 232.5407,
|
| 1373 |
+
"eval_samples_per_second": 24.546,
|
| 1374 |
+
"eval_steps_per_second": 3.07,
|
| 1375 |
+
"eval_wer": 0.37127393330213443,
|
| 1376 |
+
"step": 9600
|
| 1377 |
+
},
|
| 1378 |
+
{
|
| 1379 |
+
"epoch": 21.44,
|
| 1380 |
+
"learning_rate": 0.0001964264150943396,
|
| 1381 |
+
"loss": 0.0902,
|
| 1382 |
+
"step": 9650
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 21.56,
|
| 1386 |
+
"learning_rate": 0.00019586037735849055,
|
| 1387 |
+
"loss": 0.0898,
|
| 1388 |
+
"step": 9700
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 21.67,
|
| 1392 |
+
"learning_rate": 0.0001952943396226415,
|
| 1393 |
+
"loss": 0.0934,
|
| 1394 |
+
"step": 9750
|
| 1395 |
+
},
|
| 1396 |
+
{
|
| 1397 |
+
"epoch": 21.78,
|
| 1398 |
+
"learning_rate": 0.00019472830188679244,
|
| 1399 |
+
"loss": 0.0845,
|
| 1400 |
+
"step": 9800
|
| 1401 |
+
},
|
| 1402 |
+
{
|
| 1403 |
+
"epoch": 21.89,
|
| 1404 |
+
"learning_rate": 0.0001941622641509434,
|
| 1405 |
+
"loss": 0.0916,
|
| 1406 |
+
"step": 9850
|
| 1407 |
+
},
|
| 1408 |
+
{
|
| 1409 |
+
"epoch": 22.0,
|
| 1410 |
+
"learning_rate": 0.00019359622641509434,
|
| 1411 |
+
"loss": 0.0878,
|
| 1412 |
+
"step": 9900
|
| 1413 |
+
},
|
| 1414 |
+
{
|
| 1415 |
+
"epoch": 22.11,
|
| 1416 |
+
"learning_rate": 0.00019303018867924526,
|
| 1417 |
+
"loss": 0.0864,
|
| 1418 |
+
"step": 9950
|
| 1419 |
+
},
|
| 1420 |
+
{
|
| 1421 |
+
"epoch": 22.22,
|
| 1422 |
+
"learning_rate": 0.0001924641509433962,
|
| 1423 |
+
"loss": 0.0768,
|
| 1424 |
+
"step": 10000
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 22.22,
|
| 1428 |
+
"eval_loss": 0.5633887052536011,
|
| 1429 |
+
"eval_runtime": 233.9063,
|
| 1430 |
+
"eval_samples_per_second": 24.403,
|
| 1431 |
+
"eval_steps_per_second": 3.053,
|
| 1432 |
+
"eval_wer": 0.36429487049056913,
|
| 1433 |
+
"step": 10000
|
| 1434 |
+
},
|
| 1435 |
+
{
|
| 1436 |
+
"epoch": 22.33,
|
| 1437 |
+
"learning_rate": 0.00019189811320754715,
|
| 1438 |
+
"loss": 0.0888,
|
| 1439 |
+
"step": 10050
|
| 1440 |
+
},
|
| 1441 |
+
{
|
| 1442 |
+
"epoch": 22.44,
|
| 1443 |
+
"learning_rate": 0.0001913320754716981,
|
| 1444 |
+
"loss": 0.0876,
|
| 1445 |
+
"step": 10100
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 22.56,
|
| 1449 |
+
"learning_rate": 0.00019076603773584904,
|
| 1450 |
+
"loss": 0.0835,
|
| 1451 |
+
"step": 10150
|
| 1452 |
+
},
|
| 1453 |
+
{
|
| 1454 |
+
"epoch": 22.67,
|
| 1455 |
+
"learning_rate": 0.0001902,
|
| 1456 |
+
"loss": 0.0766,
|
| 1457 |
+
"step": 10200
|
| 1458 |
+
},
|
| 1459 |
+
{
|
| 1460 |
+
"epoch": 22.78,
|
| 1461 |
+
"learning_rate": 0.00018963396226415093,
|
| 1462 |
+
"loss": 0.0909,
|
| 1463 |
+
"step": 10250
|
| 1464 |
+
},
|
| 1465 |
+
{
|
| 1466 |
+
"epoch": 22.89,
|
| 1467 |
+
"learning_rate": 0.00018906792452830188,
|
| 1468 |
+
"loss": 0.08,
|
| 1469 |
+
"step": 10300
|
| 1470 |
+
},
|
| 1471 |
+
{
|
| 1472 |
+
"epoch": 23.0,
|
| 1473 |
+
"learning_rate": 0.00018850188679245283,
|
| 1474 |
+
"loss": 0.081,
|
| 1475 |
+
"step": 10350
|
| 1476 |
+
},
|
| 1477 |
+
{
|
| 1478 |
+
"epoch": 23.11,
|
| 1479 |
+
"learning_rate": 0.00018793584905660375,
|
| 1480 |
+
"loss": 0.0744,
|
| 1481 |
+
"step": 10400
|
| 1482 |
+
},
|
| 1483 |
+
{
|
| 1484 |
+
"epoch": 23.11,
|
| 1485 |
+
"eval_loss": 0.5204855799674988,
|
| 1486 |
+
"eval_runtime": 235.6787,
|
| 1487 |
+
"eval_samples_per_second": 24.219,
|
| 1488 |
+
"eval_steps_per_second": 3.03,
|
| 1489 |
+
"eval_wer": 0.3642745233686695,
|
| 1490 |
+
"step": 10400
|
| 1491 |
+
},
|
| 1492 |
+
{
|
| 1493 |
+
"epoch": 23.22,
|
| 1494 |
+
"learning_rate": 0.0001873698113207547,
|
| 1495 |
+
"loss": 0.0817,
|
| 1496 |
+
"step": 10450
|
| 1497 |
+
},
|
| 1498 |
+
{
|
| 1499 |
+
"epoch": 23.33,
|
| 1500 |
+
"learning_rate": 0.00018680377358490564,
|
| 1501 |
+
"loss": 0.0791,
|
| 1502 |
+
"step": 10500
|
| 1503 |
+
},
|
| 1504 |
+
{
|
| 1505 |
+
"epoch": 23.44,
|
| 1506 |
+
"learning_rate": 0.0001862377358490566,
|
| 1507 |
+
"loss": 0.0779,
|
| 1508 |
+
"step": 10550
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 23.56,
|
| 1512 |
+
"learning_rate": 0.00018567169811320753,
|
| 1513 |
+
"loss": 0.0818,
|
| 1514 |
+
"step": 10600
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 23.67,
|
| 1518 |
+
"learning_rate": 0.00018510566037735848,
|
| 1519 |
+
"loss": 0.0801,
|
| 1520 |
+
"step": 10650
|
| 1521 |
+
},
|
| 1522 |
+
{
|
| 1523 |
+
"epoch": 23.78,
|
| 1524 |
+
"learning_rate": 0.00018453962264150943,
|
| 1525 |
+
"loss": 0.0843,
|
| 1526 |
+
"step": 10700
|
| 1527 |
+
},
|
| 1528 |
+
{
|
| 1529 |
+
"epoch": 23.89,
|
| 1530 |
+
"learning_rate": 0.00018397358490566037,
|
| 1531 |
+
"loss": 0.0832,
|
| 1532 |
+
"step": 10750
|
| 1533 |
+
},
|
| 1534 |
+
{
|
| 1535 |
+
"epoch": 24.0,
|
| 1536 |
+
"learning_rate": 0.00018340754716981132,
|
| 1537 |
+
"loss": 0.0852,
|
| 1538 |
+
"step": 10800
|
| 1539 |
+
},
|
| 1540 |
+
{
|
| 1541 |
+
"epoch": 24.0,
|
| 1542 |
+
"eval_loss": 0.5427780151367188,
|
| 1543 |
+
"eval_runtime": 234.1837,
|
| 1544 |
+
"eval_samples_per_second": 24.374,
|
| 1545 |
+
"eval_steps_per_second": 3.049,
|
| 1546 |
+
"eval_wer": 0.36130384357132683,
|
| 1547 |
+
"step": 10800
|
| 1548 |
+
},
|
| 1549 |
+
{
|
| 1550 |
+
"epoch": 24.11,
|
| 1551 |
+
"learning_rate": 0.00018284150943396224,
|
| 1552 |
+
"loss": 0.0779,
|
| 1553 |
+
"step": 10850
|
| 1554 |
+
},
|
| 1555 |
+
{
|
| 1556 |
+
"epoch": 24.22,
|
| 1557 |
+
"learning_rate": 0.00018227547169811319,
|
| 1558 |
+
"loss": 0.0734,
|
| 1559 |
+
"step": 10900
|
| 1560 |
+
},
|
| 1561 |
+
{
|
| 1562 |
+
"epoch": 24.33,
|
| 1563 |
+
"learning_rate": 0.00018170943396226413,
|
| 1564 |
+
"loss": 0.0843,
|
| 1565 |
+
"step": 10950
|
| 1566 |
+
},
|
| 1567 |
+
{
|
| 1568 |
+
"epoch": 24.44,
|
| 1569 |
+
"learning_rate": 0.00018114339622641508,
|
| 1570 |
+
"loss": 0.0777,
|
| 1571 |
+
"step": 11000
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"epoch": 24.56,
|
| 1575 |
+
"learning_rate": 0.00018057735849056602,
|
| 1576 |
+
"loss": 0.0782,
|
| 1577 |
+
"step": 11050
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"epoch": 24.67,
|
| 1581 |
+
"learning_rate": 0.00018001132075471697,
|
| 1582 |
+
"loss": 0.0783,
|
| 1583 |
+
"step": 11100
|
| 1584 |
+
},
|
| 1585 |
+
{
|
| 1586 |
+
"epoch": 24.78,
|
| 1587 |
+
"learning_rate": 0.00017944528301886792,
|
| 1588 |
+
"loss": 0.076,
|
| 1589 |
+
"step": 11150
|
| 1590 |
+
},
|
| 1591 |
+
{
|
| 1592 |
+
"epoch": 24.89,
|
| 1593 |
+
"learning_rate": 0.00017887924528301886,
|
| 1594 |
+
"loss": 0.0732,
|
| 1595 |
+
"step": 11200
|
| 1596 |
+
},
|
| 1597 |
+
{
|
| 1598 |
+
"epoch": 24.89,
|
| 1599 |
+
"eval_loss": 0.551848292350769,
|
| 1600 |
+
"eval_runtime": 232.8874,
|
| 1601 |
+
"eval_samples_per_second": 24.51,
|
| 1602 |
+
"eval_steps_per_second": 3.066,
|
| 1603 |
+
"eval_wer": 0.3628298777137974,
|
| 1604 |
+
"step": 11200
|
| 1605 |
+
},
|
| 1606 |
+
{
|
| 1607 |
+
"epoch": 25.0,
|
| 1608 |
+
"learning_rate": 0.0001783245283018868,
|
| 1609 |
+
"loss": 0.0861,
|
| 1610 |
+
"step": 11250
|
| 1611 |
+
},
|
| 1612 |
+
{
|
| 1613 |
+
"epoch": 25.11,
|
| 1614 |
+
"learning_rate": 0.0001777698113207547,
|
| 1615 |
+
"loss": 0.0812,
|
| 1616 |
+
"step": 11300
|
| 1617 |
+
},
|
| 1618 |
+
{
|
| 1619 |
+
"epoch": 25.22,
|
| 1620 |
+
"learning_rate": 0.00017720377358490565,
|
| 1621 |
+
"loss": 0.0765,
|
| 1622 |
+
"step": 11350
|
| 1623 |
+
},
|
| 1624 |
+
{
|
| 1625 |
+
"epoch": 25.33,
|
| 1626 |
+
"learning_rate": 0.00017663773584905657,
|
| 1627 |
+
"loss": 0.0775,
|
| 1628 |
+
"step": 11400
|
| 1629 |
+
},
|
| 1630 |
+
{
|
| 1631 |
+
"epoch": 25.44,
|
| 1632 |
+
"learning_rate": 0.00017607169811320752,
|
| 1633 |
+
"loss": 0.0762,
|
| 1634 |
+
"step": 11450
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 25.56,
|
| 1638 |
+
"learning_rate": 0.00017550566037735846,
|
| 1639 |
+
"loss": 0.0782,
|
| 1640 |
+
"step": 11500
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"epoch": 25.67,
|
| 1644 |
+
"learning_rate": 0.0001749396226415094,
|
| 1645 |
+
"loss": 0.077,
|
| 1646 |
+
"step": 11550
|
| 1647 |
+
},
|
| 1648 |
+
{
|
| 1649 |
+
"epoch": 25.78,
|
| 1650 |
+
"learning_rate": 0.00017437358490566036,
|
| 1651 |
+
"loss": 0.0725,
|
| 1652 |
+
"step": 11600
|
| 1653 |
+
},
|
| 1654 |
+
{
|
| 1655 |
+
"epoch": 25.78,
|
| 1656 |
+
"eval_loss": 0.5757771134376526,
|
| 1657 |
+
"eval_runtime": 233.1827,
|
| 1658 |
+
"eval_samples_per_second": 24.479,
|
| 1659 |
+
"eval_steps_per_second": 3.062,
|
| 1660 |
+
"eval_wer": 0.37282031456650455,
|
| 1661 |
+
"step": 11600
|
| 1662 |
+
},
|
| 1663 |
+
{
|
| 1664 |
+
"epoch": 25.89,
|
| 1665 |
+
"learning_rate": 0.0001738075471698113,
|
| 1666 |
+
"loss": 0.08,
|
| 1667 |
+
"step": 11650
|
| 1668 |
+
},
|
| 1669 |
+
{
|
| 1670 |
+
"epoch": 26.0,
|
| 1671 |
+
"learning_rate": 0.00017324150943396225,
|
| 1672 |
+
"loss": 0.0743,
|
| 1673 |
+
"step": 11700
|
| 1674 |
+
},
|
| 1675 |
+
{
|
| 1676 |
+
"epoch": 26.11,
|
| 1677 |
+
"learning_rate": 0.0001726754716981132,
|
| 1678 |
+
"loss": 0.0722,
|
| 1679 |
+
"step": 11750
|
| 1680 |
+
},
|
| 1681 |
+
{
|
| 1682 |
+
"epoch": 26.22,
|
| 1683 |
+
"learning_rate": 0.00017210943396226414,
|
| 1684 |
+
"loss": 0.0725,
|
| 1685 |
+
"step": 11800
|
| 1686 |
+
},
|
| 1687 |
+
{
|
| 1688 |
+
"epoch": 26.33,
|
| 1689 |
+
"learning_rate": 0.00017154339622641506,
|
| 1690 |
+
"loss": 0.0708,
|
| 1691 |
+
"step": 11850
|
| 1692 |
+
},
|
| 1693 |
+
{
|
| 1694 |
+
"epoch": 26.44,
|
| 1695 |
+
"learning_rate": 0.000170977358490566,
|
| 1696 |
+
"loss": 0.081,
|
| 1697 |
+
"step": 11900
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 26.56,
|
| 1701 |
+
"learning_rate": 0.00017041132075471695,
|
| 1702 |
+
"loss": 0.0704,
|
| 1703 |
+
"step": 11950
|
| 1704 |
+
},
|
| 1705 |
+
{
|
| 1706 |
+
"epoch": 26.67,
|
| 1707 |
+
"learning_rate": 0.0001698452830188679,
|
| 1708 |
+
"loss": 0.0691,
|
| 1709 |
+
"step": 12000
|
| 1710 |
+
},
|
| 1711 |
+
{
|
| 1712 |
+
"epoch": 26.67,
|
| 1713 |
+
"eval_loss": 0.5725019574165344,
|
| 1714 |
+
"eval_runtime": 232.5631,
|
| 1715 |
+
"eval_samples_per_second": 24.544,
|
| 1716 |
+
"eval_steps_per_second": 3.07,
|
| 1717 |
+
"eval_wer": 0.3584552465053818,
|
| 1718 |
+
"step": 12000
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 26.78,
|
| 1722 |
+
"learning_rate": 0.00016927924528301885,
|
| 1723 |
+
"loss": 0.0766,
|
| 1724 |
+
"step": 12050
|
| 1725 |
+
},
|
| 1726 |
+
{
|
| 1727 |
+
"epoch": 26.89,
|
| 1728 |
+
"learning_rate": 0.0001687132075471698,
|
| 1729 |
+
"loss": 0.0767,
|
| 1730 |
+
"step": 12100
|
| 1731 |
+
},
|
| 1732 |
+
{
|
| 1733 |
+
"epoch": 27.0,
|
| 1734 |
+
"learning_rate": 0.00016814716981132074,
|
| 1735 |
+
"loss": 0.0748,
|
| 1736 |
+
"step": 12150
|
| 1737 |
+
},
|
| 1738 |
+
{
|
| 1739 |
+
"epoch": 27.11,
|
| 1740 |
+
"learning_rate": 0.0001675811320754717,
|
| 1741 |
+
"loss": 0.0645,
|
| 1742 |
+
"step": 12200
|
| 1743 |
+
},
|
| 1744 |
+
{
|
| 1745 |
+
"epoch": 27.22,
|
| 1746 |
+
"learning_rate": 0.00016701509433962263,
|
| 1747 |
+
"loss": 0.0701,
|
| 1748 |
+
"step": 12250
|
| 1749 |
+
},
|
| 1750 |
+
{
|
| 1751 |
+
"epoch": 27.33,
|
| 1752 |
+
"learning_rate": 0.00016644905660377358,
|
| 1753 |
+
"loss": 0.0702,
|
| 1754 |
+
"step": 12300
|
| 1755 |
+
},
|
| 1756 |
+
{
|
| 1757 |
+
"epoch": 27.44,
|
| 1758 |
+
"learning_rate": 0.0001658830188679245,
|
| 1759 |
+
"loss": 0.0711,
|
| 1760 |
+
"step": 12350
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 27.56,
|
| 1764 |
+
"learning_rate": 0.00016531698113207545,
|
| 1765 |
+
"loss": 0.0664,
|
| 1766 |
+
"step": 12400
|
| 1767 |
+
},
|
| 1768 |
+
{
|
| 1769 |
+
"epoch": 27.56,
|
| 1770 |
+
"eval_loss": 0.5794127583503723,
|
| 1771 |
+
"eval_runtime": 233.0106,
|
| 1772 |
+
"eval_samples_per_second": 24.497,
|
| 1773 |
+
"eval_steps_per_second": 3.064,
|
| 1774 |
+
"eval_wer": 0.35994058640405313,
|
| 1775 |
+
"step": 12400
|
| 1776 |
+
},
|
| 1777 |
+
{
|
| 1778 |
+
"epoch": 27.67,
|
| 1779 |
+
"learning_rate": 0.0001647509433962264,
|
| 1780 |
+
"loss": 0.0692,
|
| 1781 |
+
"step": 12450
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 27.78,
|
| 1785 |
+
"learning_rate": 0.00016418490566037734,
|
| 1786 |
+
"loss": 0.0705,
|
| 1787 |
+
"step": 12500
|
| 1788 |
+
},
|
| 1789 |
+
{
|
| 1790 |
+
"epoch": 27.89,
|
| 1791 |
+
"learning_rate": 0.00016361886792452829,
|
| 1792 |
+
"loss": 0.0705,
|
| 1793 |
+
"step": 12550
|
| 1794 |
+
},
|
| 1795 |
+
{
|
| 1796 |
+
"epoch": 28.0,
|
| 1797 |
+
"learning_rate": 0.00016305283018867923,
|
| 1798 |
+
"loss": 0.0655,
|
| 1799 |
+
"step": 12600
|
| 1800 |
+
},
|
| 1801 |
+
{
|
| 1802 |
+
"epoch": 28.11,
|
| 1803 |
+
"learning_rate": 0.00016248679245283018,
|
| 1804 |
+
"loss": 0.0723,
|
| 1805 |
+
"step": 12650
|
| 1806 |
+
},
|
| 1807 |
+
{
|
| 1808 |
+
"epoch": 28.22,
|
| 1809 |
+
"learning_rate": 0.00016192075471698113,
|
| 1810 |
+
"loss": 0.0716,
|
| 1811 |
+
"step": 12700
|
| 1812 |
+
},
|
| 1813 |
+
{
|
| 1814 |
+
"epoch": 28.33,
|
| 1815 |
+
"learning_rate": 0.00016135471698113207,
|
| 1816 |
+
"loss": 0.0709,
|
| 1817 |
+
"step": 12750
|
| 1818 |
+
},
|
| 1819 |
+
{
|
| 1820 |
+
"epoch": 28.44,
|
| 1821 |
+
"learning_rate": 0.000160788679245283,
|
| 1822 |
+
"loss": 0.0663,
|
| 1823 |
+
"step": 12800
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 28.44,
|
| 1827 |
+
"eval_loss": 0.5777014493942261,
|
| 1828 |
+
"eval_runtime": 235.2144,
|
| 1829 |
+
"eval_samples_per_second": 24.267,
|
| 1830 |
+
"eval_steps_per_second": 3.036,
|
| 1831 |
+
"eval_wer": 0.35607463324312777,
|
| 1832 |
+
"step": 12800
|
| 1833 |
+
},
|
| 1834 |
+
{
|
| 1835 |
+
"epoch": 28.56,
|
| 1836 |
+
"learning_rate": 0.00016022264150943394,
|
| 1837 |
+
"loss": 0.0687,
|
| 1838 |
+
"step": 12850
|
| 1839 |
+
},
|
| 1840 |
+
{
|
| 1841 |
+
"epoch": 28.67,
|
| 1842 |
+
"learning_rate": 0.00015965660377358488,
|
| 1843 |
+
"loss": 0.0736,
|
| 1844 |
+
"step": 12900
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 28.78,
|
| 1848 |
+
"learning_rate": 0.00015909056603773583,
|
| 1849 |
+
"loss": 0.0675,
|
| 1850 |
+
"step": 12950
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 28.89,
|
| 1854 |
+
"learning_rate": 0.00015852452830188678,
|
| 1855 |
+
"loss": 0.0695,
|
| 1856 |
+
"step": 13000
|
| 1857 |
+
},
|
| 1858 |
+
{
|
| 1859 |
+
"epoch": 29.0,
|
| 1860 |
+
"learning_rate": 0.00015795849056603772,
|
| 1861 |
+
"loss": 0.0719,
|
| 1862 |
+
"step": 13050
|
| 1863 |
+
},
|
| 1864 |
+
{
|
| 1865 |
+
"epoch": 29.11,
|
| 1866 |
+
"learning_rate": 0.00015739245283018867,
|
| 1867 |
+
"loss": 0.0675,
|
| 1868 |
+
"step": 13100
|
| 1869 |
+
},
|
| 1870 |
+
{
|
| 1871 |
+
"epoch": 29.22,
|
| 1872 |
+
"learning_rate": 0.00015682641509433962,
|
| 1873 |
+
"loss": 0.0692,
|
| 1874 |
+
"step": 13150
|
| 1875 |
+
},
|
| 1876 |
+
{
|
| 1877 |
+
"epoch": 29.33,
|
| 1878 |
+
"learning_rate": 0.00015626037735849056,
|
| 1879 |
+
"loss": 0.0671,
|
| 1880 |
+
"step": 13200
|
| 1881 |
+
},
|
| 1882 |
+
{
|
| 1883 |
+
"epoch": 29.33,
|
| 1884 |
+
"eval_loss": 0.573063850402832,
|
| 1885 |
+
"eval_runtime": 235.4966,
|
| 1886 |
+
"eval_samples_per_second": 24.238,
|
| 1887 |
+
"eval_steps_per_second": 3.032,
|
| 1888 |
+
"eval_wer": 0.35485380592915133,
|
| 1889 |
+
"step": 13200
|
| 1890 |
+
},
|
| 1891 |
+
{
|
| 1892 |
+
"epoch": 29.44,
|
| 1893 |
+
"learning_rate": 0.00015569433962264148,
|
| 1894 |
+
"loss": 0.0648,
|
| 1895 |
+
"step": 13250
|
| 1896 |
+
},
|
| 1897 |
+
{
|
| 1898 |
+
"epoch": 29.56,
|
| 1899 |
+
"learning_rate": 0.00015512830188679243,
|
| 1900 |
+
"loss": 0.0768,
|
| 1901 |
+
"step": 13300
|
| 1902 |
+
},
|
| 1903 |
+
{
|
| 1904 |
+
"epoch": 29.67,
|
| 1905 |
+
"learning_rate": 0.00015456226415094338,
|
| 1906 |
+
"loss": 0.0627,
|
| 1907 |
+
"step": 13350
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"epoch": 29.78,
|
| 1911 |
+
"learning_rate": 0.00015399622641509432,
|
| 1912 |
+
"loss": 0.0657,
|
| 1913 |
+
"step": 13400
|
| 1914 |
+
},
|
| 1915 |
+
{
|
| 1916 |
+
"epoch": 29.89,
|
| 1917 |
+
"learning_rate": 0.00015343018867924527,
|
| 1918 |
+
"loss": 0.0698,
|
| 1919 |
+
"step": 13450
|
| 1920 |
+
},
|
| 1921 |
+
{
|
| 1922 |
+
"epoch": 30.0,
|
| 1923 |
+
"learning_rate": 0.00015286415094339622,
|
| 1924 |
+
"loss": 0.0683,
|
| 1925 |
+
"step": 13500
|
| 1926 |
+
},
|
| 1927 |
+
{
|
| 1928 |
+
"epoch": 30.11,
|
| 1929 |
+
"learning_rate": 0.00015229811320754716,
|
| 1930 |
+
"loss": 0.0616,
|
| 1931 |
+
"step": 13550
|
| 1932 |
+
},
|
| 1933 |
+
{
|
| 1934 |
+
"epoch": 30.22,
|
| 1935 |
+
"learning_rate": 0.0001517320754716981,
|
| 1936 |
+
"loss": 0.0649,
|
| 1937 |
+
"step": 13600
|
| 1938 |
+
},
|
| 1939 |
+
{
|
| 1940 |
+
"epoch": 30.22,
|
| 1941 |
+
"eval_loss": 0.5660180449485779,
|
| 1942 |
+
"eval_runtime": 233.6416,
|
| 1943 |
+
"eval_samples_per_second": 24.431,
|
| 1944 |
+
"eval_steps_per_second": 3.056,
|
| 1945 |
+
"eval_wer": 0.3600423220135512,
|
| 1946 |
+
"step": 13600
|
| 1947 |
+
},
|
| 1948 |
+
{
|
| 1949 |
+
"epoch": 30.33,
|
| 1950 |
+
"learning_rate": 0.00015116603773584905,
|
| 1951 |
+
"loss": 0.0674,
|
| 1952 |
+
"step": 13650
|
| 1953 |
+
},
|
| 1954 |
+
{
|
| 1955 |
+
"epoch": 30.44,
|
| 1956 |
+
"learning_rate": 0.00015059999999999997,
|
| 1957 |
+
"loss": 0.0645,
|
| 1958 |
+
"step": 13700
|
| 1959 |
+
},
|
| 1960 |
+
{
|
| 1961 |
+
"epoch": 30.56,
|
| 1962 |
+
"learning_rate": 0.00015003396226415092,
|
| 1963 |
+
"loss": 0.0643,
|
| 1964 |
+
"step": 13750
|
| 1965 |
+
},
|
| 1966 |
+
{
|
| 1967 |
+
"epoch": 30.67,
|
| 1968 |
+
"learning_rate": 0.00014946792452830187,
|
| 1969 |
+
"loss": 0.0631,
|
| 1970 |
+
"step": 13800
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 30.78,
|
| 1974 |
+
"learning_rate": 0.00014890188679245281,
|
| 1975 |
+
"loss": 0.064,
|
| 1976 |
+
"step": 13850
|
| 1977 |
+
},
|
| 1978 |
+
{
|
| 1979 |
+
"epoch": 30.89,
|
| 1980 |
+
"learning_rate": 0.00014833584905660376,
|
| 1981 |
+
"loss": 0.0666,
|
| 1982 |
+
"step": 13900
|
| 1983 |
+
},
|
| 1984 |
+
{
|
| 1985 |
+
"epoch": 31.0,
|
| 1986 |
+
"learning_rate": 0.0001477698113207547,
|
| 1987 |
+
"loss": 0.0656,
|
| 1988 |
+
"step": 13950
|
| 1989 |
+
},
|
| 1990 |
+
{
|
| 1991 |
+
"epoch": 31.11,
|
| 1992 |
+
"learning_rate": 0.00014720377358490565,
|
| 1993 |
+
"loss": 0.0614,
|
| 1994 |
+
"step": 14000
|
| 1995 |
+
},
|
| 1996 |
+
{
|
| 1997 |
+
"epoch": 31.11,
|
| 1998 |
+
"eval_loss": 0.5769771933555603,
|
| 1999 |
+
"eval_runtime": 234.4224,
|
| 2000 |
+
"eval_samples_per_second": 24.349,
|
| 2001 |
+
"eval_steps_per_second": 3.046,
|
| 2002 |
+
"eval_wer": 0.35595255051173014,
|
| 2003 |
+
"step": 14000
|
| 2004 |
+
},
|
| 2005 |
+
{
|
| 2006 |
+
"epoch": 31.22,
|
| 2007 |
+
"learning_rate": 0.0001466377358490566,
|
| 2008 |
+
"loss": 0.0609,
|
| 2009 |
+
"step": 14050
|
| 2010 |
+
},
|
| 2011 |
+
{
|
| 2012 |
+
"epoch": 31.33,
|
| 2013 |
+
"learning_rate": 0.00014607169811320755,
|
| 2014 |
+
"loss": 0.0615,
|
| 2015 |
+
"step": 14100
|
| 2016 |
+
},
|
| 2017 |
+
{
|
| 2018 |
+
"epoch": 31.44,
|
| 2019 |
+
"learning_rate": 0.0001455056603773585,
|
| 2020 |
+
"loss": 0.0595,
|
| 2021 |
+
"step": 14150
|
| 2022 |
+
},
|
| 2023 |
+
{
|
| 2024 |
+
"epoch": 31.56,
|
| 2025 |
+
"learning_rate": 0.0001449396226415094,
|
| 2026 |
+
"loss": 0.0535,
|
| 2027 |
+
"step": 14200
|
| 2028 |
+
},
|
| 2029 |
+
{
|
| 2030 |
+
"epoch": 31.67,
|
| 2031 |
+
"learning_rate": 0.00014437358490566036,
|
| 2032 |
+
"loss": 0.0662,
|
| 2033 |
+
"step": 14250
|
| 2034 |
+
},
|
| 2035 |
+
{
|
| 2036 |
+
"epoch": 31.78,
|
| 2037 |
+
"learning_rate": 0.0001438075471698113,
|
| 2038 |
+
"loss": 0.0636,
|
| 2039 |
+
"step": 14300
|
| 2040 |
+
},
|
| 2041 |
+
{
|
| 2042 |
+
"epoch": 31.89,
|
| 2043 |
+
"learning_rate": 0.00014324150943396225,
|
| 2044 |
+
"loss": 0.065,
|
| 2045 |
+
"step": 14350
|
| 2046 |
+
},
|
| 2047 |
+
{
|
| 2048 |
+
"epoch": 32.0,
|
| 2049 |
+
"learning_rate": 0.0001426754716981132,
|
| 2050 |
+
"loss": 0.0605,
|
| 2051 |
+
"step": 14400
|
| 2052 |
+
},
|
| 2053 |
+
{
|
| 2054 |
+
"epoch": 32.0,
|
| 2055 |
+
"eval_loss": 0.5667794942855835,
|
| 2056 |
+
"eval_runtime": 236.4511,
|
| 2057 |
+
"eval_samples_per_second": 24.14,
|
| 2058 |
+
"eval_steps_per_second": 3.02,
|
| 2059 |
+
"eval_wer": 0.35633914582782267,
|
| 2060 |
+
"step": 14400
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 32.11,
|
| 2064 |
+
"learning_rate": 0.00014210943396226414,
|
| 2065 |
+
"loss": 0.0576,
|
| 2066 |
+
"step": 14450
|
| 2067 |
+
},
|
| 2068 |
+
{
|
| 2069 |
+
"epoch": 32.22,
|
| 2070 |
+
"learning_rate": 0.0001415433962264151,
|
| 2071 |
+
"loss": 0.0576,
|
| 2072 |
+
"step": 14500
|
| 2073 |
+
},
|
| 2074 |
+
{
|
| 2075 |
+
"epoch": 32.33,
|
| 2076 |
+
"learning_rate": 0.00014097735849056604,
|
| 2077 |
+
"loss": 0.0567,
|
| 2078 |
+
"step": 14550
|
| 2079 |
+
},
|
| 2080 |
+
{
|
| 2081 |
+
"epoch": 32.44,
|
| 2082 |
+
"learning_rate": 0.00014041132075471698,
|
| 2083 |
+
"loss": 0.0638,
|
| 2084 |
+
"step": 14600
|
| 2085 |
+
},
|
| 2086 |
+
{
|
| 2087 |
+
"epoch": 32.56,
|
| 2088 |
+
"learning_rate": 0.0001398452830188679,
|
| 2089 |
+
"loss": 0.0563,
|
| 2090 |
+
"step": 14650
|
| 2091 |
+
},
|
| 2092 |
+
{
|
| 2093 |
+
"epoch": 32.67,
|
| 2094 |
+
"learning_rate": 0.00013927924528301885,
|
| 2095 |
+
"loss": 0.0606,
|
| 2096 |
+
"step": 14700
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 32.78,
|
| 2100 |
+
"learning_rate": 0.0001387132075471698,
|
| 2101 |
+
"loss": 0.066,
|
| 2102 |
+
"step": 14750
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"epoch": 32.89,
|
| 2106 |
+
"learning_rate": 0.00013814716981132074,
|
| 2107 |
+
"loss": 0.0594,
|
| 2108 |
+
"step": 14800
|
| 2109 |
+
},
|
| 2110 |
+
{
|
| 2111 |
+
"epoch": 32.89,
|
| 2112 |
+
"eval_loss": 0.5590910911560059,
|
| 2113 |
+
"eval_runtime": 236.6548,
|
| 2114 |
+
"eval_samples_per_second": 24.12,
|
| 2115 |
+
"eval_steps_per_second": 3.017,
|
| 2116 |
+
"eval_wer": 0.3464707917065131,
|
| 2117 |
+
"step": 14800
|
| 2118 |
+
},
|
| 2119 |
+
{
|
| 2120 |
+
"epoch": 33.0,
|
| 2121 |
+
"learning_rate": 0.0001375811320754717,
|
| 2122 |
+
"loss": 0.0567,
|
| 2123 |
+
"step": 14850
|
| 2124 |
+
},
|
| 2125 |
+
{
|
| 2126 |
+
"epoch": 33.11,
|
| 2127 |
+
"learning_rate": 0.00013701509433962264,
|
| 2128 |
+
"loss": 0.0593,
|
| 2129 |
+
"step": 14900
|
| 2130 |
+
},
|
| 2131 |
+
{
|
| 2132 |
+
"epoch": 33.22,
|
| 2133 |
+
"learning_rate": 0.00013644905660377358,
|
| 2134 |
+
"loss": 0.0503,
|
| 2135 |
+
"step": 14950
|
| 2136 |
+
},
|
| 2137 |
+
{
|
| 2138 |
+
"epoch": 33.33,
|
| 2139 |
+
"learning_rate": 0.00013588301886792453,
|
| 2140 |
+
"loss": 0.0548,
|
| 2141 |
+
"step": 15000
|
| 2142 |
+
},
|
| 2143 |
+
{
|
| 2144 |
+
"epoch": 33.44,
|
| 2145 |
+
"learning_rate": 0.00013531698113207548,
|
| 2146 |
+
"loss": 0.058,
|
| 2147 |
+
"step": 15050
|
| 2148 |
+
},
|
| 2149 |
+
{
|
| 2150 |
+
"epoch": 33.56,
|
| 2151 |
+
"learning_rate": 0.0001347509433962264,
|
| 2152 |
+
"loss": 0.0593,
|
| 2153 |
+
"step": 15100
|
| 2154 |
+
},
|
| 2155 |
+
{
|
| 2156 |
+
"epoch": 33.67,
|
| 2157 |
+
"learning_rate": 0.00013418490566037734,
|
| 2158 |
+
"loss": 0.0576,
|
| 2159 |
+
"step": 15150
|
| 2160 |
+
},
|
| 2161 |
+
{
|
| 2162 |
+
"epoch": 33.78,
|
| 2163 |
+
"learning_rate": 0.0001336188679245283,
|
| 2164 |
+
"loss": 0.0622,
|
| 2165 |
+
"step": 15200
|
| 2166 |
+
},
|
| 2167 |
+
{
|
| 2168 |
+
"epoch": 33.78,
|
| 2169 |
+
"eval_loss": 0.6206709742546082,
|
| 2170 |
+
"eval_runtime": 237.9375,
|
| 2171 |
+
"eval_samples_per_second": 23.989,
|
| 2172 |
+
"eval_steps_per_second": 3.001,
|
| 2173 |
+
"eval_wer": 0.35127271247482045,
|
| 2174 |
+
"step": 15200
|
| 2175 |
+
},
|
| 2176 |
+
{
|
| 2177 |
+
"epoch": 33.89,
|
| 2178 |
+
"learning_rate": 0.00013305283018867923,
|
| 2179 |
+
"loss": 0.0554,
|
| 2180 |
+
"step": 15250
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 34.0,
|
| 2184 |
+
"learning_rate": 0.00013248679245283018,
|
| 2185 |
+
"loss": 0.0536,
|
| 2186 |
+
"step": 15300
|
| 2187 |
+
},
|
| 2188 |
+
{
|
| 2189 |
+
"epoch": 34.11,
|
| 2190 |
+
"learning_rate": 0.00013192075471698113,
|
| 2191 |
+
"loss": 0.0585,
|
| 2192 |
+
"step": 15350
|
| 2193 |
+
},
|
| 2194 |
+
{
|
| 2195 |
+
"epoch": 34.22,
|
| 2196 |
+
"learning_rate": 0.00013135471698113207,
|
| 2197 |
+
"loss": 0.0604,
|
| 2198 |
+
"step": 15400
|
| 2199 |
+
},
|
| 2200 |
+
{
|
| 2201 |
+
"epoch": 34.33,
|
| 2202 |
+
"learning_rate": 0.00013078867924528302,
|
| 2203 |
+
"loss": 0.0586,
|
| 2204 |
+
"step": 15450
|
| 2205 |
+
},
|
| 2206 |
+
{
|
| 2207 |
+
"epoch": 34.44,
|
| 2208 |
+
"learning_rate": 0.00013023396226415093,
|
| 2209 |
+
"loss": 0.0648,
|
| 2210 |
+
"step": 15500
|
| 2211 |
+
},
|
| 2212 |
+
{
|
| 2213 |
+
"epoch": 34.56,
|
| 2214 |
+
"learning_rate": 0.00012966792452830187,
|
| 2215 |
+
"loss": 0.0534,
|
| 2216 |
+
"step": 15550
|
| 2217 |
+
},
|
| 2218 |
+
{
|
| 2219 |
+
"epoch": 34.67,
|
| 2220 |
+
"learning_rate": 0.00012910188679245282,
|
| 2221 |
+
"loss": 0.0597,
|
| 2222 |
+
"step": 15600
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 34.67,
|
| 2226 |
+
"eval_loss": 0.545280933380127,
|
| 2227 |
+
"eval_runtime": 234.5113,
|
| 2228 |
+
"eval_samples_per_second": 24.34,
|
| 2229 |
+
"eval_steps_per_second": 3.045,
|
| 2230 |
+
"eval_wer": 0.35078438154922986,
|
| 2231 |
+
"step": 15600
|
| 2232 |
+
},
|
| 2233 |
+
{
|
| 2234 |
+
"epoch": 34.78,
|
| 2235 |
+
"learning_rate": 0.00012853584905660377,
|
| 2236 |
+
"loss": 0.058,
|
| 2237 |
+
"step": 15650
|
| 2238 |
+
},
|
| 2239 |
+
{
|
| 2240 |
+
"epoch": 34.89,
|
| 2241 |
+
"learning_rate": 0.0001279698113207547,
|
| 2242 |
+
"loss": 0.0557,
|
| 2243 |
+
"step": 15700
|
| 2244 |
+
},
|
| 2245 |
+
{
|
| 2246 |
+
"epoch": 35.0,
|
| 2247 |
+
"learning_rate": 0.00012740377358490566,
|
| 2248 |
+
"loss": 0.0557,
|
| 2249 |
+
"step": 15750
|
| 2250 |
+
},
|
| 2251 |
+
{
|
| 2252 |
+
"epoch": 35.11,
|
| 2253 |
+
"learning_rate": 0.0001268377358490566,
|
| 2254 |
+
"loss": 0.0529,
|
| 2255 |
+
"step": 15800
|
| 2256 |
+
},
|
| 2257 |
+
{
|
| 2258 |
+
"epoch": 35.22,
|
| 2259 |
+
"learning_rate": 0.00012627169811320753,
|
| 2260 |
+
"loss": 0.0544,
|
| 2261 |
+
"step": 15850
|
| 2262 |
+
},
|
| 2263 |
+
{
|
| 2264 |
+
"epoch": 35.33,
|
| 2265 |
+
"learning_rate": 0.00012570566037735847,
|
| 2266 |
+
"loss": 0.0538,
|
| 2267 |
+
"step": 15900
|
| 2268 |
+
},
|
| 2269 |
+
{
|
| 2270 |
+
"epoch": 35.44,
|
| 2271 |
+
"learning_rate": 0.00012513962264150942,
|
| 2272 |
+
"loss": 0.0517,
|
| 2273 |
+
"step": 15950
|
| 2274 |
+
},
|
| 2275 |
+
{
|
| 2276 |
+
"epoch": 35.56,
|
| 2277 |
+
"learning_rate": 0.00012457358490566037,
|
| 2278 |
+
"loss": 0.0566,
|
| 2279 |
+
"step": 16000
|
| 2280 |
+
},
|
| 2281 |
+
{
|
| 2282 |
+
"epoch": 35.56,
|
| 2283 |
+
"eval_loss": 0.6024277210235596,
|
| 2284 |
+
"eval_runtime": 233.9908,
|
| 2285 |
+
"eval_samples_per_second": 24.394,
|
| 2286 |
+
"eval_steps_per_second": 3.051,
|
| 2287 |
+
"eval_wer": 0.3531649948114839,
|
| 2288 |
+
"step": 16000
|
| 2289 |
+
},
|
| 2290 |
+
{
|
| 2291 |
+
"epoch": 35.67,
|
| 2292 |
+
"learning_rate": 0.0001240075471698113,
|
| 2293 |
+
"loss": 0.051,
|
| 2294 |
+
"step": 16050
|
| 2295 |
+
},
|
| 2296 |
+
{
|
| 2297 |
+
"epoch": 35.78,
|
| 2298 |
+
"learning_rate": 0.00012344150943396226,
|
| 2299 |
+
"loss": 0.0591,
|
| 2300 |
+
"step": 16100
|
| 2301 |
+
},
|
| 2302 |
+
{
|
| 2303 |
+
"epoch": 35.89,
|
| 2304 |
+
"learning_rate": 0.0001228754716981132,
|
| 2305 |
+
"loss": 0.0569,
|
| 2306 |
+
"step": 16150
|
| 2307 |
+
},
|
| 2308 |
+
{
|
| 2309 |
+
"epoch": 36.0,
|
| 2310 |
+
"learning_rate": 0.00012230943396226415,
|
| 2311 |
+
"loss": 0.0563,
|
| 2312 |
+
"step": 16200
|
| 2313 |
+
},
|
| 2314 |
+
{
|
| 2315 |
+
"epoch": 36.11,
|
| 2316 |
+
"learning_rate": 0.00012174339622641508,
|
| 2317 |
+
"loss": 0.0533,
|
| 2318 |
+
"step": 16250
|
| 2319 |
+
},
|
| 2320 |
+
{
|
| 2321 |
+
"epoch": 36.22,
|
| 2322 |
+
"learning_rate": 0.00012117735849056603,
|
| 2323 |
+
"loss": 0.0566,
|
| 2324 |
+
"step": 16300
|
| 2325 |
+
},
|
| 2326 |
+
{
|
| 2327 |
+
"epoch": 36.33,
|
| 2328 |
+
"learning_rate": 0.00012061132075471698,
|
| 2329 |
+
"loss": 0.0556,
|
| 2330 |
+
"step": 16350
|
| 2331 |
+
},
|
| 2332 |
+
{
|
| 2333 |
+
"epoch": 36.44,
|
| 2334 |
+
"learning_rate": 0.00012004528301886791,
|
| 2335 |
+
"loss": 0.0524,
|
| 2336 |
+
"step": 16400
|
| 2337 |
+
},
|
| 2338 |
+
{
|
| 2339 |
+
"epoch": 36.44,
|
| 2340 |
+
"eval_loss": 0.6054043173789978,
|
| 2341 |
+
"eval_runtime": 232.789,
|
| 2342 |
+
"eval_samples_per_second": 24.52,
|
| 2343 |
+
"eval_steps_per_second": 3.067,
|
| 2344 |
+
"eval_wer": 0.3538161027122714,
|
| 2345 |
+
"step": 16400
|
| 2346 |
+
},
|
| 2347 |
+
{
|
| 2348 |
+
"epoch": 36.56,
|
| 2349 |
+
"learning_rate": 0.00011947924528301886,
|
| 2350 |
+
"loss": 0.0568,
|
| 2351 |
+
"step": 16450
|
| 2352 |
+
},
|
| 2353 |
+
{
|
| 2354 |
+
"epoch": 36.67,
|
| 2355 |
+
"learning_rate": 0.0001189132075471698,
|
| 2356 |
+
"loss": 0.0554,
|
| 2357 |
+
"step": 16500
|
| 2358 |
+
},
|
| 2359 |
+
{
|
| 2360 |
+
"epoch": 36.78,
|
| 2361 |
+
"learning_rate": 0.00011834716981132075,
|
| 2362 |
+
"loss": 0.0499,
|
| 2363 |
+
"step": 16550
|
| 2364 |
+
},
|
| 2365 |
+
{
|
| 2366 |
+
"epoch": 36.89,
|
| 2367 |
+
"learning_rate": 0.0001177811320754717,
|
| 2368 |
+
"loss": 0.0518,
|
| 2369 |
+
"step": 16600
|
| 2370 |
+
},
|
| 2371 |
+
{
|
| 2372 |
+
"epoch": 37.0,
|
| 2373 |
+
"learning_rate": 0.00011721509433962263,
|
| 2374 |
+
"loss": 0.0571,
|
| 2375 |
+
"step": 16650
|
| 2376 |
+
},
|
| 2377 |
+
{
|
| 2378 |
+
"epoch": 37.11,
|
| 2379 |
+
"learning_rate": 0.00011664905660377358,
|
| 2380 |
+
"loss": 0.0542,
|
| 2381 |
+
"step": 16700
|
| 2382 |
+
},
|
| 2383 |
+
{
|
| 2384 |
+
"epoch": 37.22,
|
| 2385 |
+
"learning_rate": 0.00011608301886792452,
|
| 2386 |
+
"loss": 0.0502,
|
| 2387 |
+
"step": 16750
|
| 2388 |
+
},
|
| 2389 |
+
{
|
| 2390 |
+
"epoch": 37.33,
|
| 2391 |
+
"learning_rate": 0.00011551698113207547,
|
| 2392 |
+
"loss": 0.045,
|
| 2393 |
+
"step": 16800
|
| 2394 |
+
},
|
| 2395 |
+
{
|
| 2396 |
+
"epoch": 37.33,
|
| 2397 |
+
"eval_loss": 0.6067692041397095,
|
| 2398 |
+
"eval_runtime": 233.7086,
|
| 2399 |
+
"eval_samples_per_second": 24.424,
|
| 2400 |
+
"eval_steps_per_second": 3.055,
|
| 2401 |
+
"eval_wer": 0.3464097503408143,
|
| 2402 |
+
"step": 16800
|
| 2403 |
+
},
|
| 2404 |
+
{
|
| 2405 |
+
"epoch": 37.44,
|
| 2406 |
+
"learning_rate": 0.0001149509433962264,
|
| 2407 |
+
"loss": 0.0536,
|
| 2408 |
+
"step": 16850
|
| 2409 |
+
},
|
| 2410 |
+
{
|
| 2411 |
+
"epoch": 37.56,
|
| 2412 |
+
"learning_rate": 0.00011438490566037735,
|
| 2413 |
+
"loss": 0.0513,
|
| 2414 |
+
"step": 16900
|
| 2415 |
+
},
|
| 2416 |
+
{
|
| 2417 |
+
"epoch": 37.67,
|
| 2418 |
+
"learning_rate": 0.0001138188679245283,
|
| 2419 |
+
"loss": 0.0513,
|
| 2420 |
+
"step": 16950
|
| 2421 |
+
},
|
| 2422 |
+
{
|
| 2423 |
+
"epoch": 37.78,
|
| 2424 |
+
"learning_rate": 0.00011325283018867924,
|
| 2425 |
+
"loss": 0.0546,
|
| 2426 |
+
"step": 17000
|
| 2427 |
+
},
|
| 2428 |
+
{
|
| 2429 |
+
"epoch": 37.89,
|
| 2430 |
+
"learning_rate": 0.00011268679245283019,
|
| 2431 |
+
"loss": 0.0552,
|
| 2432 |
+
"step": 17050
|
| 2433 |
+
},
|
| 2434 |
+
{
|
| 2435 |
+
"epoch": 38.0,
|
| 2436 |
+
"learning_rate": 0.00011212075471698112,
|
| 2437 |
+
"loss": 0.0511,
|
| 2438 |
+
"step": 17100
|
| 2439 |
+
},
|
| 2440 |
+
{
|
| 2441 |
+
"epoch": 38.11,
|
| 2442 |
+
"learning_rate": 0.00011155471698113207,
|
| 2443 |
+
"loss": 0.0517,
|
| 2444 |
+
"step": 17150
|
| 2445 |
+
},
|
| 2446 |
+
{
|
| 2447 |
+
"epoch": 38.22,
|
| 2448 |
+
"learning_rate": 0.00011098867924528301,
|
| 2449 |
+
"loss": 0.0526,
|
| 2450 |
+
"step": 17200
|
| 2451 |
+
},
|
| 2452 |
+
{
|
| 2453 |
+
"epoch": 38.22,
|
| 2454 |
+
"eval_loss": 0.5827322602272034,
|
| 2455 |
+
"eval_runtime": 234.6281,
|
| 2456 |
+
"eval_samples_per_second": 24.328,
|
| 2457 |
+
"eval_steps_per_second": 3.043,
|
| 2458 |
+
"eval_wer": 0.34946181862575537,
|
| 2459 |
+
"step": 17200
|
| 2460 |
+
},
|
| 2461 |
+
{
|
| 2462 |
+
"epoch": 38.33,
|
| 2463 |
+
"learning_rate": 0.00011042264150943396,
|
| 2464 |
+
"loss": 0.0452,
|
| 2465 |
+
"step": 17250
|
| 2466 |
+
},
|
| 2467 |
+
{
|
| 2468 |
+
"epoch": 38.44,
|
| 2469 |
+
"learning_rate": 0.0001098566037735849,
|
| 2470 |
+
"loss": 0.0471,
|
| 2471 |
+
"step": 17300
|
| 2472 |
+
},
|
| 2473 |
+
{
|
| 2474 |
+
"epoch": 38.56,
|
| 2475 |
+
"learning_rate": 0.00010929056603773584,
|
| 2476 |
+
"loss": 0.049,
|
| 2477 |
+
"step": 17350
|
| 2478 |
+
},
|
| 2479 |
+
{
|
| 2480 |
+
"epoch": 38.67,
|
| 2481 |
+
"learning_rate": 0.00010873584905660376,
|
| 2482 |
+
"loss": 0.0551,
|
| 2483 |
+
"step": 17400
|
| 2484 |
+
},
|
| 2485 |
+
{
|
| 2486 |
+
"epoch": 38.78,
|
| 2487 |
+
"learning_rate": 0.0001081698113207547,
|
| 2488 |
+
"loss": 0.0522,
|
| 2489 |
+
"step": 17450
|
| 2490 |
+
},
|
| 2491 |
+
{
|
| 2492 |
+
"epoch": 38.89,
|
| 2493 |
+
"learning_rate": 0.00010760377358490565,
|
| 2494 |
+
"loss": 0.0504,
|
| 2495 |
+
"step": 17500
|
| 2496 |
+
},
|
| 2497 |
+
{
|
| 2498 |
+
"epoch": 39.0,
|
| 2499 |
+
"learning_rate": 0.0001070377358490566,
|
| 2500 |
+
"loss": 0.0474,
|
| 2501 |
+
"step": 17550
|
| 2502 |
+
},
|
| 2503 |
+
{
|
| 2504 |
+
"epoch": 39.11,
|
| 2505 |
+
"learning_rate": 0.00010647169811320753,
|
| 2506 |
+
"loss": 0.0437,
|
| 2507 |
+
"step": 17600
|
| 2508 |
+
},
|
| 2509 |
+
{
|
| 2510 |
+
"epoch": 39.11,
|
| 2511 |
+
"eval_loss": 0.6006141901016235,
|
| 2512 |
+
"eval_runtime": 234.8995,
|
| 2513 |
+
"eval_samples_per_second": 24.3,
|
| 2514 |
+
"eval_steps_per_second": 3.04,
|
| 2515 |
+
"eval_wer": 0.33963415874824504,
|
| 2516 |
+
"step": 17600
|
| 2517 |
+
},
|
| 2518 |
+
{
|
| 2519 |
+
"epoch": 39.22,
|
| 2520 |
+
"learning_rate": 0.00010590566037735848,
|
| 2521 |
+
"loss": 0.0444,
|
| 2522 |
+
"step": 17650
|
| 2523 |
+
},
|
| 2524 |
+
{
|
| 2525 |
+
"epoch": 39.33,
|
| 2526 |
+
"learning_rate": 0.00010533962264150943,
|
| 2527 |
+
"loss": 0.0496,
|
| 2528 |
+
"step": 17700
|
| 2529 |
+
},
|
| 2530 |
+
{
|
| 2531 |
+
"epoch": 39.44,
|
| 2532 |
+
"learning_rate": 0.00010477358490566037,
|
| 2533 |
+
"loss": 0.0514,
|
| 2534 |
+
"step": 17750
|
| 2535 |
+
},
|
| 2536 |
+
{
|
| 2537 |
+
"epoch": 39.56,
|
| 2538 |
+
"learning_rate": 0.0001042075471698113,
|
| 2539 |
+
"loss": 0.0506,
|
| 2540 |
+
"step": 17800
|
| 2541 |
+
},
|
| 2542 |
+
{
|
| 2543 |
+
"epoch": 39.67,
|
| 2544 |
+
"learning_rate": 0.00010364150943396225,
|
| 2545 |
+
"loss": 0.0494,
|
| 2546 |
+
"step": 17850
|
| 2547 |
+
},
|
| 2548 |
+
{
|
| 2549 |
+
"epoch": 39.78,
|
| 2550 |
+
"learning_rate": 0.0001030754716981132,
|
| 2551 |
+
"loss": 0.046,
|
| 2552 |
+
"step": 17900
|
| 2553 |
+
},
|
| 2554 |
+
{
|
| 2555 |
+
"epoch": 39.89,
|
| 2556 |
+
"learning_rate": 0.00010250943396226414,
|
| 2557 |
+
"loss": 0.0515,
|
| 2558 |
+
"step": 17950
|
| 2559 |
+
},
|
| 2560 |
+
{
|
| 2561 |
+
"epoch": 40.0,
|
| 2562 |
+
"learning_rate": 0.00010194339622641509,
|
| 2563 |
+
"loss": 0.0498,
|
| 2564 |
+
"step": 18000
|
| 2565 |
+
},
|
| 2566 |
+
{
|
| 2567 |
+
"epoch": 40.0,
|
| 2568 |
+
"eval_loss": 0.546351969242096,
|
| 2569 |
+
"eval_runtime": 234.7053,
|
| 2570 |
+
"eval_samples_per_second": 24.32,
|
| 2571 |
+
"eval_steps_per_second": 3.042,
|
| 2572 |
+
"eval_wer": 0.3422996317170936,
|
| 2573 |
+
"step": 18000
|
| 2574 |
+
},
|
| 2575 |
+
{
|
| 2576 |
+
"epoch": 40.11,
|
| 2577 |
+
"learning_rate": 0.00010137735849056602,
|
| 2578 |
+
"loss": 0.0514,
|
| 2579 |
+
"step": 18050
|
| 2580 |
+
},
|
| 2581 |
+
{
|
| 2582 |
+
"epoch": 40.22,
|
| 2583 |
+
"learning_rate": 0.00010081132075471697,
|
| 2584 |
+
"loss": 0.0454,
|
| 2585 |
+
"step": 18100
|
| 2586 |
+
},
|
| 2587 |
+
{
|
| 2588 |
+
"epoch": 40.33,
|
| 2589 |
+
"learning_rate": 0.00010024528301886792,
|
| 2590 |
+
"loss": 0.044,
|
| 2591 |
+
"step": 18150
|
| 2592 |
+
},
|
| 2593 |
+
{
|
| 2594 |
+
"epoch": 40.44,
|
| 2595 |
+
"learning_rate": 9.967924528301886e-05,
|
| 2596 |
+
"loss": 0.047,
|
| 2597 |
+
"step": 18200
|
| 2598 |
+
},
|
| 2599 |
+
{
|
| 2600 |
+
"epoch": 40.56,
|
| 2601 |
+
"learning_rate": 9.911320754716981e-05,
|
| 2602 |
+
"loss": 0.0412,
|
| 2603 |
+
"step": 18250
|
| 2604 |
+
},
|
| 2605 |
+
{
|
| 2606 |
+
"epoch": 40.67,
|
| 2607 |
+
"learning_rate": 9.854716981132074e-05,
|
| 2608 |
+
"loss": 0.0484,
|
| 2609 |
+
"step": 18300
|
| 2610 |
+
},
|
| 2611 |
+
{
|
| 2612 |
+
"epoch": 40.78,
|
| 2613 |
+
"learning_rate": 9.798113207547169e-05,
|
| 2614 |
+
"loss": 0.0413,
|
| 2615 |
+
"step": 18350
|
| 2616 |
+
},
|
| 2617 |
+
{
|
| 2618 |
+
"epoch": 40.89,
|
| 2619 |
+
"learning_rate": 9.741509433962264e-05,
|
| 2620 |
+
"loss": 0.0494,
|
| 2621 |
+
"step": 18400
|
| 2622 |
+
},
|
| 2623 |
+
{
|
| 2624 |
+
"epoch": 40.89,
|
| 2625 |
+
"eval_loss": 0.6018606424331665,
|
| 2626 |
+
"eval_runtime": 234.1001,
|
| 2627 |
+
"eval_samples_per_second": 24.383,
|
| 2628 |
+
"eval_steps_per_second": 3.05,
|
| 2629 |
+
"eval_wer": 0.3394713817730482,
|
| 2630 |
+
"step": 18400
|
| 2631 |
+
},
|
| 2632 |
+
{
|
| 2633 |
+
"epoch": 41.0,
|
| 2634 |
+
"learning_rate": 9.684905660377358e-05,
|
| 2635 |
+
"loss": 0.0462,
|
| 2636 |
+
"step": 18450
|
| 2637 |
+
},
|
| 2638 |
+
{
|
| 2639 |
+
"epoch": 41.11,
|
| 2640 |
+
"learning_rate": 9.628301886792452e-05,
|
| 2641 |
+
"loss": 0.0404,
|
| 2642 |
+
"step": 18500
|
| 2643 |
+
},
|
| 2644 |
+
{
|
| 2645 |
+
"epoch": 41.22,
|
| 2646 |
+
"learning_rate": 9.571698113207546e-05,
|
| 2647 |
+
"loss": 0.0452,
|
| 2648 |
+
"step": 18550
|
| 2649 |
+
},
|
| 2650 |
+
{
|
| 2651 |
+
"epoch": 41.33,
|
| 2652 |
+
"learning_rate": 9.515094339622641e-05,
|
| 2653 |
+
"loss": 0.042,
|
| 2654 |
+
"step": 18600
|
| 2655 |
+
},
|
| 2656 |
+
{
|
| 2657 |
+
"epoch": 41.44,
|
| 2658 |
+
"learning_rate": 9.458490566037736e-05,
|
| 2659 |
+
"loss": 0.0449,
|
| 2660 |
+
"step": 18650
|
| 2661 |
+
},
|
| 2662 |
+
{
|
| 2663 |
+
"epoch": 41.56,
|
| 2664 |
+
"learning_rate": 9.40188679245283e-05,
|
| 2665 |
+
"loss": 0.0431,
|
| 2666 |
+
"step": 18700
|
| 2667 |
+
},
|
| 2668 |
+
{
|
| 2669 |
+
"epoch": 41.67,
|
| 2670 |
+
"learning_rate": 9.345283018867923e-05,
|
| 2671 |
+
"loss": 0.0407,
|
| 2672 |
+
"step": 18750
|
| 2673 |
+
},
|
| 2674 |
+
{
|
| 2675 |
+
"epoch": 41.78,
|
| 2676 |
+
"learning_rate": 9.288679245283018e-05,
|
| 2677 |
+
"loss": 0.0476,
|
| 2678 |
+
"step": 18800
|
| 2679 |
+
},
|
| 2680 |
+
{
|
| 2681 |
+
"epoch": 41.78,
|
| 2682 |
+
"eval_loss": 0.5934082865715027,
|
| 2683 |
+
"eval_runtime": 234.8837,
|
| 2684 |
+
"eval_samples_per_second": 24.301,
|
| 2685 |
+
"eval_steps_per_second": 3.04,
|
| 2686 |
+
"eval_wer": 0.3392068691883533,
|
| 2687 |
+
"step": 18800
|
| 2688 |
+
},
|
| 2689 |
+
{
|
| 2690 |
+
"epoch": 41.89,
|
| 2691 |
+
"learning_rate": 9.232075471698113e-05,
|
| 2692 |
+
"loss": 0.0475,
|
| 2693 |
+
"step": 18850
|
| 2694 |
+
},
|
| 2695 |
+
{
|
| 2696 |
+
"epoch": 42.0,
|
| 2697 |
+
"learning_rate": 9.175471698113207e-05,
|
| 2698 |
+
"loss": 0.0422,
|
| 2699 |
+
"step": 18900
|
| 2700 |
+
},
|
| 2701 |
+
{
|
| 2702 |
+
"epoch": 42.11,
|
| 2703 |
+
"learning_rate": 9.118867924528302e-05,
|
| 2704 |
+
"loss": 0.0424,
|
| 2705 |
+
"step": 18950
|
| 2706 |
+
},
|
| 2707 |
+
{
|
| 2708 |
+
"epoch": 42.22,
|
| 2709 |
+
"learning_rate": 9.062264150943395e-05,
|
| 2710 |
+
"loss": 0.0446,
|
| 2711 |
+
"step": 19000
|
| 2712 |
+
},
|
| 2713 |
+
{
|
| 2714 |
+
"epoch": 42.33,
|
| 2715 |
+
"learning_rate": 9.00566037735849e-05,
|
| 2716 |
+
"loss": 0.0435,
|
| 2717 |
+
"step": 19050
|
| 2718 |
+
},
|
| 2719 |
+
{
|
| 2720 |
+
"epoch": 42.44,
|
| 2721 |
+
"learning_rate": 8.949056603773585e-05,
|
| 2722 |
+
"loss": 0.0423,
|
| 2723 |
+
"step": 19100
|
| 2724 |
+
},
|
| 2725 |
+
{
|
| 2726 |
+
"epoch": 42.56,
|
| 2727 |
+
"learning_rate": 8.892452830188679e-05,
|
| 2728 |
+
"loss": 0.0403,
|
| 2729 |
+
"step": 19150
|
| 2730 |
+
},
|
| 2731 |
+
{
|
| 2732 |
+
"epoch": 42.67,
|
| 2733 |
+
"learning_rate": 8.835849056603773e-05,
|
| 2734 |
+
"loss": 0.0414,
|
| 2735 |
+
"step": 19200
|
| 2736 |
+
},
|
| 2737 |
+
{
|
| 2738 |
+
"epoch": 42.67,
|
| 2739 |
+
"eval_loss": 0.6187946796417236,
|
| 2740 |
+
"eval_runtime": 235.2867,
|
| 2741 |
+
"eval_samples_per_second": 24.26,
|
| 2742 |
+
"eval_steps_per_second": 3.035,
|
| 2743 |
+
"eval_wer": 0.3374366695830875,
|
| 2744 |
+
"step": 19200
|
| 2745 |
+
},
|
| 2746 |
+
{
|
| 2747 |
+
"epoch": 42.78,
|
| 2748 |
+
"learning_rate": 8.779245283018867e-05,
|
| 2749 |
+
"loss": 0.0444,
|
| 2750 |
+
"step": 19250
|
| 2751 |
+
},
|
| 2752 |
+
{
|
| 2753 |
+
"epoch": 42.89,
|
| 2754 |
+
"learning_rate": 8.722641509433962e-05,
|
| 2755 |
+
"loss": 0.0476,
|
| 2756 |
+
"step": 19300
|
| 2757 |
+
},
|
| 2758 |
+
{
|
| 2759 |
+
"epoch": 43.0,
|
| 2760 |
+
"learning_rate": 8.666037735849057e-05,
|
| 2761 |
+
"loss": 0.0426,
|
| 2762 |
+
"step": 19350
|
| 2763 |
+
},
|
| 2764 |
+
{
|
| 2765 |
+
"epoch": 43.11,
|
| 2766 |
+
"learning_rate": 8.609433962264151e-05,
|
| 2767 |
+
"loss": 0.04,
|
| 2768 |
+
"step": 19400
|
| 2769 |
+
},
|
| 2770 |
+
{
|
| 2771 |
+
"epoch": 43.22,
|
| 2772 |
+
"learning_rate": 8.552830188679245e-05,
|
| 2773 |
+
"loss": 0.0452,
|
| 2774 |
+
"step": 19450
|
| 2775 |
+
},
|
| 2776 |
+
{
|
| 2777 |
+
"epoch": 43.33,
|
| 2778 |
+
"learning_rate": 8.496226415094339e-05,
|
| 2779 |
+
"loss": 0.0396,
|
| 2780 |
+
"step": 19500
|
| 2781 |
+
},
|
| 2782 |
+
{
|
| 2783 |
+
"epoch": 43.44,
|
| 2784 |
+
"learning_rate": 8.439622641509434e-05,
|
| 2785 |
+
"loss": 0.0404,
|
| 2786 |
+
"step": 19550
|
| 2787 |
+
},
|
| 2788 |
+
{
|
| 2789 |
+
"epoch": 43.56,
|
| 2790 |
+
"learning_rate": 8.383018867924528e-05,
|
| 2791 |
+
"loss": 0.0382,
|
| 2792 |
+
"step": 19600
|
| 2793 |
+
},
|
| 2794 |
+
{
|
| 2795 |
+
"epoch": 43.56,
|
| 2796 |
+
"eval_loss": 0.6085843443870544,
|
| 2797 |
+
"eval_runtime": 233.4151,
|
| 2798 |
+
"eval_samples_per_second": 24.454,
|
| 2799 |
+
"eval_steps_per_second": 3.059,
|
| 2800 |
+
"eval_wer": 0.33273648442427817,
|
| 2801 |
+
"step": 19600
|
| 2802 |
+
},
|
| 2803 |
+
{
|
| 2804 |
+
"epoch": 43.67,
|
| 2805 |
+
"learning_rate": 8.326415094339622e-05,
|
| 2806 |
+
"loss": 0.0408,
|
| 2807 |
+
"step": 19650
|
| 2808 |
+
},
|
| 2809 |
+
{
|
| 2810 |
+
"epoch": 43.78,
|
| 2811 |
+
"learning_rate": 8.269811320754716e-05,
|
| 2812 |
+
"loss": 0.0443,
|
| 2813 |
+
"step": 19700
|
| 2814 |
+
},
|
| 2815 |
+
{
|
| 2816 |
+
"epoch": 43.89,
|
| 2817 |
+
"learning_rate": 8.213207547169811e-05,
|
| 2818 |
+
"loss": 0.0464,
|
| 2819 |
+
"step": 19750
|
| 2820 |
+
},
|
| 2821 |
+
{
|
| 2822 |
+
"epoch": 44.0,
|
| 2823 |
+
"learning_rate": 8.156603773584906e-05,
|
| 2824 |
+
"loss": 0.0383,
|
| 2825 |
+
"step": 19800
|
| 2826 |
+
},
|
| 2827 |
+
{
|
| 2828 |
+
"epoch": 44.11,
|
| 2829 |
+
"learning_rate": 8.1e-05,
|
| 2830 |
+
"loss": 0.0447,
|
| 2831 |
+
"step": 19850
|
| 2832 |
+
},
|
| 2833 |
+
{
|
| 2834 |
+
"epoch": 44.22,
|
| 2835 |
+
"learning_rate": 8.043396226415094e-05,
|
| 2836 |
+
"loss": 0.0419,
|
| 2837 |
+
"step": 19900
|
| 2838 |
+
},
|
| 2839 |
+
{
|
| 2840 |
+
"epoch": 44.33,
|
| 2841 |
+
"learning_rate": 7.986792452830188e-05,
|
| 2842 |
+
"loss": 0.0389,
|
| 2843 |
+
"step": 19950
|
| 2844 |
+
},
|
| 2845 |
+
{
|
| 2846 |
+
"epoch": 44.44,
|
| 2847 |
+
"learning_rate": 7.930188679245283e-05,
|
| 2848 |
+
"loss": 0.0403,
|
| 2849 |
+
"step": 20000
|
| 2850 |
+
},
|
| 2851 |
+
{
|
| 2852 |
+
"epoch": 44.44,
|
| 2853 |
+
"eval_loss": 0.6319227814674377,
|
| 2854 |
+
"eval_runtime": 233.7986,
|
| 2855 |
+
"eval_samples_per_second": 24.414,
|
| 2856 |
+
"eval_steps_per_second": 3.054,
|
| 2857 |
+
"eval_wer": 0.3353002217836287,
|
| 2858 |
+
"step": 20000
|
| 2859 |
+
},
|
| 2860 |
+
{
|
| 2861 |
+
"epoch": 44.56,
|
| 2862 |
+
"learning_rate": 7.873584905660378e-05,
|
| 2863 |
+
"loss": 0.0397,
|
| 2864 |
+
"step": 20050
|
| 2865 |
+
},
|
| 2866 |
+
{
|
| 2867 |
+
"epoch": 44.67,
|
| 2868 |
+
"learning_rate": 7.816981132075472e-05,
|
| 2869 |
+
"loss": 0.0406,
|
| 2870 |
+
"step": 20100
|
| 2871 |
+
},
|
| 2872 |
+
{
|
| 2873 |
+
"epoch": 44.78,
|
| 2874 |
+
"learning_rate": 7.760377358490566e-05,
|
| 2875 |
+
"loss": 0.039,
|
| 2876 |
+
"step": 20150
|
| 2877 |
+
},
|
| 2878 |
+
{
|
| 2879 |
+
"epoch": 44.89,
|
| 2880 |
+
"learning_rate": 7.70377358490566e-05,
|
| 2881 |
+
"loss": 0.0388,
|
| 2882 |
+
"step": 20200
|
| 2883 |
+
},
|
| 2884 |
+
{
|
| 2885 |
+
"epoch": 45.0,
|
| 2886 |
+
"learning_rate": 7.647169811320755e-05,
|
| 2887 |
+
"loss": 0.0391,
|
| 2888 |
+
"step": 20250
|
| 2889 |
+
},
|
| 2890 |
+
{
|
| 2891 |
+
"epoch": 45.11,
|
| 2892 |
+
"learning_rate": 7.59056603773585e-05,
|
| 2893 |
+
"loss": 0.0343,
|
| 2894 |
+
"step": 20300
|
| 2895 |
+
},
|
| 2896 |
+
{
|
| 2897 |
+
"epoch": 45.22,
|
| 2898 |
+
"learning_rate": 7.533962264150943e-05,
|
| 2899 |
+
"loss": 0.0381,
|
| 2900 |
+
"step": 20350
|
| 2901 |
+
},
|
| 2902 |
+
{
|
| 2903 |
+
"epoch": 45.33,
|
| 2904 |
+
"learning_rate": 7.477358490566037e-05,
|
| 2905 |
+
"loss": 0.0391,
|
| 2906 |
+
"step": 20400
|
| 2907 |
+
},
|
| 2908 |
+
{
|
| 2909 |
+
"epoch": 45.33,
|
| 2910 |
+
"eval_loss": 0.6092292666435242,
|
| 2911 |
+
"eval_runtime": 234.709,
|
| 2912 |
+
"eval_samples_per_second": 24.319,
|
| 2913 |
+
"eval_steps_per_second": 3.042,
|
| 2914 |
+
"eval_wer": 0.337253545485991,
|
| 2915 |
+
"step": 20400
|
| 2916 |
+
},
|
| 2917 |
+
{
|
| 2918 |
+
"epoch": 45.44,
|
| 2919 |
+
"learning_rate": 7.420754716981131e-05,
|
| 2920 |
+
"loss": 0.0404,
|
| 2921 |
+
"step": 20450
|
| 2922 |
+
},
|
| 2923 |
+
{
|
| 2924 |
+
"epoch": 45.56,
|
| 2925 |
+
"learning_rate": 7.364150943396225e-05,
|
| 2926 |
+
"loss": 0.0441,
|
| 2927 |
+
"step": 20500
|
| 2928 |
+
},
|
| 2929 |
+
{
|
| 2930 |
+
"epoch": 45.67,
|
| 2931 |
+
"learning_rate": 7.30754716981132e-05,
|
| 2932 |
+
"loss": 0.0374,
|
| 2933 |
+
"step": 20550
|
| 2934 |
+
},
|
| 2935 |
+
{
|
| 2936 |
+
"epoch": 45.78,
|
| 2937 |
+
"learning_rate": 7.250943396226415e-05,
|
| 2938 |
+
"loss": 0.0379,
|
| 2939 |
+
"step": 20600
|
| 2940 |
+
},
|
| 2941 |
+
{
|
| 2942 |
+
"epoch": 45.89,
|
| 2943 |
+
"learning_rate": 7.19433962264151e-05,
|
| 2944 |
+
"loss": 0.04,
|
| 2945 |
+
"step": 20650
|
| 2946 |
+
},
|
| 2947 |
+
{
|
| 2948 |
+
"epoch": 46.0,
|
| 2949 |
+
"learning_rate": 7.137735849056603e-05,
|
| 2950 |
+
"loss": 0.041,
|
| 2951 |
+
"step": 20700
|
| 2952 |
+
},
|
| 2953 |
+
{
|
| 2954 |
+
"epoch": 46.11,
|
| 2955 |
+
"learning_rate": 7.081132075471697e-05,
|
| 2956 |
+
"loss": 0.0367,
|
| 2957 |
+
"step": 20750
|
| 2958 |
+
},
|
| 2959 |
+
{
|
| 2960 |
+
"epoch": 46.22,
|
| 2961 |
+
"learning_rate": 7.024528301886792e-05,
|
| 2962 |
+
"loss": 0.0364,
|
| 2963 |
+
"step": 20800
|
| 2964 |
+
},
|
| 2965 |
+
{
|
| 2966 |
+
"epoch": 46.22,
|
| 2967 |
+
"eval_loss": 0.6104596257209778,
|
| 2968 |
+
"eval_runtime": 238.3111,
|
| 2969 |
+
"eval_samples_per_second": 23.952,
|
| 2970 |
+
"eval_steps_per_second": 2.996,
|
| 2971 |
+
"eval_wer": 0.33383522900685697,
|
| 2972 |
+
"step": 20800
|
| 2973 |
+
},
|
| 2974 |
+
{
|
| 2975 |
+
"epoch": 46.33,
|
| 2976 |
+
"learning_rate": 6.967924528301887e-05,
|
| 2977 |
+
"loss": 0.0379,
|
| 2978 |
+
"step": 20850
|
| 2979 |
+
},
|
| 2980 |
+
{
|
| 2981 |
+
"epoch": 46.44,
|
| 2982 |
+
"learning_rate": 6.91132075471698e-05,
|
| 2983 |
+
"loss": 0.0392,
|
| 2984 |
+
"step": 20900
|
| 2985 |
+
},
|
| 2986 |
+
{
|
| 2987 |
+
"epoch": 46.56,
|
| 2988 |
+
"learning_rate": 6.854716981132075e-05,
|
| 2989 |
+
"loss": 0.0402,
|
| 2990 |
+
"step": 20950
|
| 2991 |
+
},
|
| 2992 |
+
{
|
| 2993 |
+
"epoch": 46.67,
|
| 2994 |
+
"learning_rate": 6.798113207547169e-05,
|
| 2995 |
+
"loss": 0.042,
|
| 2996 |
+
"step": 21000
|
| 2997 |
+
},
|
| 2998 |
+
{
|
| 2999 |
+
"epoch": 46.78,
|
| 3000 |
+
"learning_rate": 6.741509433962264e-05,
|
| 3001 |
+
"loss": 0.0366,
|
| 3002 |
+
"step": 21050
|
| 3003 |
+
},
|
| 3004 |
+
{
|
| 3005 |
+
"epoch": 46.89,
|
| 3006 |
+
"learning_rate": 6.684905660377359e-05,
|
| 3007 |
+
"loss": 0.0377,
|
| 3008 |
+
"step": 21100
|
| 3009 |
+
},
|
| 3010 |
+
{
|
| 3011 |
+
"epoch": 47.0,
|
| 3012 |
+
"learning_rate": 6.628301886792452e-05,
|
| 3013 |
+
"loss": 0.0345,
|
| 3014 |
+
"step": 21150
|
| 3015 |
+
},
|
| 3016 |
+
{
|
| 3017 |
+
"epoch": 47.11,
|
| 3018 |
+
"learning_rate": 6.571698113207546e-05,
|
| 3019 |
+
"loss": 0.0408,
|
| 3020 |
+
"step": 21200
|
| 3021 |
+
},
|
| 3022 |
+
{
|
| 3023 |
+
"epoch": 47.11,
|
| 3024 |
+
"eval_loss": 0.6161568760871887,
|
| 3025 |
+
"eval_runtime": 235.8491,
|
| 3026 |
+
"eval_samples_per_second": 24.202,
|
| 3027 |
+
"eval_steps_per_second": 3.027,
|
| 3028 |
+
"eval_wer": 0.3335910635440617,
|
| 3029 |
+
"step": 21200
|
| 3030 |
+
},
|
| 3031 |
+
{
|
| 3032 |
+
"epoch": 47.22,
|
| 3033 |
+
"learning_rate": 6.515094339622641e-05,
|
| 3034 |
+
"loss": 0.0377,
|
| 3035 |
+
"step": 21250
|
| 3036 |
+
},
|
| 3037 |
+
{
|
| 3038 |
+
"epoch": 47.33,
|
| 3039 |
+
"learning_rate": 6.459622641509433e-05,
|
| 3040 |
+
"loss": 0.0387,
|
| 3041 |
+
"step": 21300
|
| 3042 |
+
},
|
| 3043 |
+
{
|
| 3044 |
+
"epoch": 47.44,
|
| 3045 |
+
"learning_rate": 6.403018867924528e-05,
|
| 3046 |
+
"loss": 0.0349,
|
| 3047 |
+
"step": 21350
|
| 3048 |
+
},
|
| 3049 |
+
{
|
| 3050 |
+
"epoch": 47.56,
|
| 3051 |
+
"learning_rate": 6.346415094339622e-05,
|
| 3052 |
+
"loss": 0.0398,
|
| 3053 |
+
"step": 21400
|
| 3054 |
+
},
|
| 3055 |
+
{
|
| 3056 |
+
"epoch": 47.67,
|
| 3057 |
+
"learning_rate": 6.289811320754717e-05,
|
| 3058 |
+
"loss": 0.036,
|
| 3059 |
+
"step": 21450
|
| 3060 |
+
},
|
| 3061 |
+
{
|
| 3062 |
+
"epoch": 47.78,
|
| 3063 |
+
"learning_rate": 6.233207547169812e-05,
|
| 3064 |
+
"loss": 0.0359,
|
| 3065 |
+
"step": 21500
|
| 3066 |
+
},
|
| 3067 |
+
{
|
| 3068 |
+
"epoch": 47.89,
|
| 3069 |
+
"learning_rate": 6.176603773584905e-05,
|
| 3070 |
+
"loss": 0.0363,
|
| 3071 |
+
"step": 21550
|
| 3072 |
+
},
|
| 3073 |
+
{
|
| 3074 |
+
"epoch": 48.0,
|
| 3075 |
+
"learning_rate": 6.12e-05,
|
| 3076 |
+
"loss": 0.0347,
|
| 3077 |
+
"step": 21600
|
| 3078 |
+
},
|
| 3079 |
+
{
|
| 3080 |
+
"epoch": 48.0,
|
| 3081 |
+
"eval_loss": 0.5747588276863098,
|
| 3082 |
+
"eval_runtime": 234.422,
|
| 3083 |
+
"eval_samples_per_second": 24.349,
|
| 3084 |
+
"eval_steps_per_second": 3.046,
|
| 3085 |
+
"eval_wer": 0.32937920931084297,
|
| 3086 |
+
"step": 21600
|
| 3087 |
+
},
|
| 3088 |
+
{
|
| 3089 |
+
"epoch": 48.11,
|
| 3090 |
+
"learning_rate": 6.0633962264150937e-05,
|
| 3091 |
+
"loss": 0.0357,
|
| 3092 |
+
"step": 21650
|
| 3093 |
+
},
|
| 3094 |
+
{
|
| 3095 |
+
"epoch": 48.22,
|
| 3096 |
+
"learning_rate": 6.0067924528301876e-05,
|
| 3097 |
+
"loss": 0.036,
|
| 3098 |
+
"step": 21700
|
| 3099 |
+
},
|
| 3100 |
+
{
|
| 3101 |
+
"epoch": 48.33,
|
| 3102 |
+
"learning_rate": 5.950188679245282e-05,
|
| 3103 |
+
"loss": 0.0362,
|
| 3104 |
+
"step": 21750
|
| 3105 |
+
},
|
| 3106 |
+
{
|
| 3107 |
+
"epoch": 48.44,
|
| 3108 |
+
"learning_rate": 5.893584905660376e-05,
|
| 3109 |
+
"loss": 0.0313,
|
| 3110 |
+
"step": 21800
|
| 3111 |
+
},
|
| 3112 |
+
{
|
| 3113 |
+
"epoch": 48.56,
|
| 3114 |
+
"learning_rate": 5.836981132075471e-05,
|
| 3115 |
+
"loss": 0.0365,
|
| 3116 |
+
"step": 21850
|
| 3117 |
+
},
|
| 3118 |
+
{
|
| 3119 |
+
"epoch": 48.67,
|
| 3120 |
+
"learning_rate": 5.780377358490565e-05,
|
| 3121 |
+
"loss": 0.0326,
|
| 3122 |
+
"step": 21900
|
| 3123 |
+
},
|
| 3124 |
+
{
|
| 3125 |
+
"epoch": 48.78,
|
| 3126 |
+
"learning_rate": 5.7237735849056595e-05,
|
| 3127 |
+
"loss": 0.0339,
|
| 3128 |
+
"step": 21950
|
| 3129 |
+
},
|
| 3130 |
+
{
|
| 3131 |
+
"epoch": 48.89,
|
| 3132 |
+
"learning_rate": 5.667169811320754e-05,
|
| 3133 |
+
"loss": 0.0372,
|
| 3134 |
+
"step": 22000
|
| 3135 |
+
},
|
| 3136 |
+
{
|
| 3137 |
+
"epoch": 48.89,
|
| 3138 |
+
"eval_loss": 0.5893652439117432,
|
| 3139 |
+
"eval_runtime": 233.9923,
|
| 3140 |
+
"eval_samples_per_second": 24.394,
|
| 3141 |
+
"eval_steps_per_second": 3.051,
|
| 3142 |
+
"eval_wer": 0.3295826805298391,
|
| 3143 |
+
"step": 22000
|
| 3144 |
+
},
|
| 3145 |
+
{
|
| 3146 |
+
"epoch": 49.0,
|
| 3147 |
+
"learning_rate": 5.610566037735848e-05,
|
| 3148 |
+
"loss": 0.0346,
|
| 3149 |
+
"step": 22050
|
| 3150 |
+
},
|
| 3151 |
+
{
|
| 3152 |
+
"epoch": 49.11,
|
| 3153 |
+
"learning_rate": 5.553962264150943e-05,
|
| 3154 |
+
"loss": 0.0356,
|
| 3155 |
+
"step": 22100
|
| 3156 |
+
},
|
| 3157 |
+
{
|
| 3158 |
+
"epoch": 49.22,
|
| 3159 |
+
"learning_rate": 5.497358490566037e-05,
|
| 3160 |
+
"loss": 0.0371,
|
| 3161 |
+
"step": 22150
|
| 3162 |
+
},
|
| 3163 |
+
{
|
| 3164 |
+
"epoch": 49.33,
|
| 3165 |
+
"learning_rate": 5.4407547169811314e-05,
|
| 3166 |
+
"loss": 0.0342,
|
| 3167 |
+
"step": 22200
|
| 3168 |
+
},
|
| 3169 |
+
{
|
| 3170 |
+
"epoch": 49.44,
|
| 3171 |
+
"learning_rate": 5.3841509433962254e-05,
|
| 3172 |
+
"loss": 0.0323,
|
| 3173 |
+
"step": 22250
|
| 3174 |
+
},
|
| 3175 |
+
{
|
| 3176 |
+
"epoch": 49.56,
|
| 3177 |
+
"learning_rate": 5.32754716981132e-05,
|
| 3178 |
+
"loss": 0.0326,
|
| 3179 |
+
"step": 22300
|
| 3180 |
+
},
|
| 3181 |
+
{
|
| 3182 |
+
"epoch": 49.67,
|
| 3183 |
+
"learning_rate": 5.270943396226415e-05,
|
| 3184 |
+
"loss": 0.0349,
|
| 3185 |
+
"step": 22350
|
| 3186 |
+
},
|
| 3187 |
+
{
|
| 3188 |
+
"epoch": 49.78,
|
| 3189 |
+
"learning_rate": 5.214339622641509e-05,
|
| 3190 |
+
"loss": 0.0378,
|
| 3191 |
+
"step": 22400
|
| 3192 |
+
},
|
| 3193 |
+
{
|
| 3194 |
+
"epoch": 49.78,
|
| 3195 |
+
"eval_loss": 0.6031844019889832,
|
| 3196 |
+
"eval_runtime": 234.1475,
|
| 3197 |
+
"eval_samples_per_second": 24.378,
|
| 3198 |
+
"eval_steps_per_second": 3.049,
|
| 3199 |
+
"eval_wer": 0.33098663194091194,
|
| 3200 |
+
"step": 22400
|
| 3201 |
+
},
|
| 3202 |
+
{
|
| 3203 |
+
"epoch": 49.89,
|
| 3204 |
+
"learning_rate": 5.157735849056603e-05,
|
| 3205 |
+
"loss": 0.03,
|
| 3206 |
+
"step": 22450
|
| 3207 |
+
},
|
| 3208 |
+
{
|
| 3209 |
+
"epoch": 50.0,
|
| 3210 |
+
"learning_rate": 5.101132075471697e-05,
|
| 3211 |
+
"loss": 0.0345,
|
| 3212 |
+
"step": 22500
|
| 3213 |
+
},
|
| 3214 |
+
{
|
| 3215 |
+
"epoch": 50.11,
|
| 3216 |
+
"learning_rate": 5.044528301886792e-05,
|
| 3217 |
+
"loss": 0.0358,
|
| 3218 |
+
"step": 22550
|
| 3219 |
+
},
|
| 3220 |
+
{
|
| 3221 |
+
"epoch": 50.22,
|
| 3222 |
+
"learning_rate": 4.987924528301886e-05,
|
| 3223 |
+
"loss": 0.0345,
|
| 3224 |
+
"step": 22600
|
| 3225 |
+
},
|
| 3226 |
+
{
|
| 3227 |
+
"epoch": 50.33,
|
| 3228 |
+
"learning_rate": 4.9313207547169806e-05,
|
| 3229 |
+
"loss": 0.035,
|
| 3230 |
+
"step": 22650
|
| 3231 |
+
},
|
| 3232 |
+
{
|
| 3233 |
+
"epoch": 50.44,
|
| 3234 |
+
"learning_rate": 4.874716981132075e-05,
|
| 3235 |
+
"loss": 0.0331,
|
| 3236 |
+
"step": 22700
|
| 3237 |
+
},
|
| 3238 |
+
{
|
| 3239 |
+
"epoch": 50.56,
|
| 3240 |
+
"learning_rate": 4.818113207547169e-05,
|
| 3241 |
+
"loss": 0.0339,
|
| 3242 |
+
"step": 22750
|
| 3243 |
+
},
|
| 3244 |
+
{
|
| 3245 |
+
"epoch": 50.67,
|
| 3246 |
+
"learning_rate": 4.761509433962264e-05,
|
| 3247 |
+
"loss": 0.0371,
|
| 3248 |
+
"step": 22800
|
| 3249 |
+
},
|
| 3250 |
+
{
|
| 3251 |
+
"epoch": 50.67,
|
| 3252 |
+
"eval_loss": 0.5830812454223633,
|
| 3253 |
+
"eval_runtime": 238.3507,
|
| 3254 |
+
"eval_samples_per_second": 23.948,
|
| 3255 |
+
"eval_steps_per_second": 2.996,
|
| 3256 |
+
"eval_wer": 0.3274665798522799,
|
| 3257 |
+
"step": 22800
|
| 3258 |
+
},
|
| 3259 |
+
{
|
| 3260 |
+
"epoch": 50.78,
|
| 3261 |
+
"learning_rate": 4.704905660377358e-05,
|
| 3262 |
+
"loss": 0.0345,
|
| 3263 |
+
"step": 22850
|
| 3264 |
+
},
|
| 3265 |
+
{
|
| 3266 |
+
"epoch": 50.89,
|
| 3267 |
+
"learning_rate": 4.6483018867924525e-05,
|
| 3268 |
+
"loss": 0.0325,
|
| 3269 |
+
"step": 22900
|
| 3270 |
+
},
|
| 3271 |
+
{
|
| 3272 |
+
"epoch": 51.0,
|
| 3273 |
+
"learning_rate": 4.5916981132075465e-05,
|
| 3274 |
+
"loss": 0.0387,
|
| 3275 |
+
"step": 22950
|
| 3276 |
+
},
|
| 3277 |
+
{
|
| 3278 |
+
"epoch": 51.11,
|
| 3279 |
+
"learning_rate": 4.535094339622641e-05,
|
| 3280 |
+
"loss": 0.0367,
|
| 3281 |
+
"step": 23000
|
| 3282 |
+
},
|
| 3283 |
+
{
|
| 3284 |
+
"epoch": 51.22,
|
| 3285 |
+
"learning_rate": 4.478490566037736e-05,
|
| 3286 |
+
"loss": 0.0317,
|
| 3287 |
+
"step": 23050
|
| 3288 |
+
},
|
| 3289 |
+
{
|
| 3290 |
+
"epoch": 51.33,
|
| 3291 |
+
"learning_rate": 4.42188679245283e-05,
|
| 3292 |
+
"loss": 0.0349,
|
| 3293 |
+
"step": 23100
|
| 3294 |
+
},
|
| 3295 |
+
{
|
| 3296 |
+
"epoch": 51.44,
|
| 3297 |
+
"learning_rate": 4.3652830188679244e-05,
|
| 3298 |
+
"loss": 0.0322,
|
| 3299 |
+
"step": 23150
|
| 3300 |
+
},
|
| 3301 |
+
{
|
| 3302 |
+
"epoch": 51.56,
|
| 3303 |
+
"learning_rate": 4.3086792452830184e-05,
|
| 3304 |
+
"loss": 0.0323,
|
| 3305 |
+
"step": 23200
|
| 3306 |
+
},
|
| 3307 |
+
{
|
| 3308 |
+
"epoch": 51.56,
|
| 3309 |
+
"eval_loss": 0.5856512784957886,
|
| 3310 |
+
"eval_runtime": 235.7185,
|
| 3311 |
+
"eval_samples_per_second": 24.215,
|
| 3312 |
+
"eval_steps_per_second": 3.029,
|
| 3313 |
+
"eval_wer": 0.3265713064886972,
|
| 3314 |
+
"step": 23200
|
| 3315 |
+
},
|
| 3316 |
+
{
|
| 3317 |
+
"epoch": 51.67,
|
| 3318 |
+
"learning_rate": 4.252075471698113e-05,
|
| 3319 |
+
"loss": 0.0329,
|
| 3320 |
+
"step": 23250
|
| 3321 |
+
},
|
| 3322 |
+
{
|
| 3323 |
+
"epoch": 51.78,
|
| 3324 |
+
"learning_rate": 4.195471698113207e-05,
|
| 3325 |
+
"loss": 0.0348,
|
| 3326 |
+
"step": 23300
|
| 3327 |
+
},
|
| 3328 |
+
{
|
| 3329 |
+
"epoch": 51.89,
|
| 3330 |
+
"learning_rate": 4.1388679245283016e-05,
|
| 3331 |
+
"loss": 0.0324,
|
| 3332 |
+
"step": 23350
|
| 3333 |
+
},
|
| 3334 |
+
{
|
| 3335 |
+
"epoch": 52.0,
|
| 3336 |
+
"learning_rate": 4.0822641509433956e-05,
|
| 3337 |
+
"loss": 0.0311,
|
| 3338 |
+
"step": 23400
|
| 3339 |
+
},
|
| 3340 |
+
{
|
| 3341 |
+
"epoch": 52.11,
|
| 3342 |
+
"learning_rate": 4.02566037735849e-05,
|
| 3343 |
+
"loss": 0.031,
|
| 3344 |
+
"step": 23450
|
| 3345 |
+
},
|
| 3346 |
+
{
|
| 3347 |
+
"epoch": 52.22,
|
| 3348 |
+
"learning_rate": 3.969056603773585e-05,
|
| 3349 |
+
"loss": 0.0329,
|
| 3350 |
+
"step": 23500
|
| 3351 |
+
},
|
| 3352 |
+
{
|
| 3353 |
+
"epoch": 52.33,
|
| 3354 |
+
"learning_rate": 3.912452830188679e-05,
|
| 3355 |
+
"loss": 0.031,
|
| 3356 |
+
"step": 23550
|
| 3357 |
+
},
|
| 3358 |
+
{
|
| 3359 |
+
"epoch": 52.44,
|
| 3360 |
+
"learning_rate": 3.8558490566037735e-05,
|
| 3361 |
+
"loss": 0.0313,
|
| 3362 |
+
"step": 23600
|
| 3363 |
+
},
|
| 3364 |
+
{
|
| 3365 |
+
"epoch": 52.44,
|
| 3366 |
+
"eval_loss": 0.591876745223999,
|
| 3367 |
+
"eval_runtime": 234.2309,
|
| 3368 |
+
"eval_samples_per_second": 24.369,
|
| 3369 |
+
"eval_steps_per_second": 3.048,
|
| 3370 |
+
"eval_wer": 0.3222170224021812,
|
| 3371 |
+
"step": 23600
|
| 3372 |
+
},
|
| 3373 |
+
{
|
| 3374 |
+
"epoch": 52.56,
|
| 3375 |
+
"learning_rate": 3.7992452830188675e-05,
|
| 3376 |
+
"loss": 0.0326,
|
| 3377 |
+
"step": 23650
|
| 3378 |
+
},
|
| 3379 |
+
{
|
| 3380 |
+
"epoch": 52.67,
|
| 3381 |
+
"learning_rate": 3.742641509433962e-05,
|
| 3382 |
+
"loss": 0.0277,
|
| 3383 |
+
"step": 23700
|
| 3384 |
+
},
|
| 3385 |
+
{
|
| 3386 |
+
"epoch": 52.78,
|
| 3387 |
+
"learning_rate": 3.686037735849056e-05,
|
| 3388 |
+
"loss": 0.0316,
|
| 3389 |
+
"step": 23750
|
| 3390 |
+
},
|
| 3391 |
+
{
|
| 3392 |
+
"epoch": 52.89,
|
| 3393 |
+
"learning_rate": 3.629433962264151e-05,
|
| 3394 |
+
"loss": 0.0309,
|
| 3395 |
+
"step": 23800
|
| 3396 |
+
},
|
| 3397 |
+
{
|
| 3398 |
+
"epoch": 53.0,
|
| 3399 |
+
"learning_rate": 3.5728301886792454e-05,
|
| 3400 |
+
"loss": 0.032,
|
| 3401 |
+
"step": 23850
|
| 3402 |
+
},
|
| 3403 |
+
{
|
| 3404 |
+
"epoch": 53.11,
|
| 3405 |
+
"learning_rate": 3.5162264150943394e-05,
|
| 3406 |
+
"loss": 0.0289,
|
| 3407 |
+
"step": 23900
|
| 3408 |
+
},
|
| 3409 |
+
{
|
| 3410 |
+
"epoch": 53.22,
|
| 3411 |
+
"learning_rate": 3.459622641509434e-05,
|
| 3412 |
+
"loss": 0.0284,
|
| 3413 |
+
"step": 23950
|
| 3414 |
+
},
|
| 3415 |
+
{
|
| 3416 |
+
"epoch": 53.33,
|
| 3417 |
+
"learning_rate": 3.403018867924528e-05,
|
| 3418 |
+
"loss": 0.0309,
|
| 3419 |
+
"step": 24000
|
| 3420 |
+
},
|
| 3421 |
+
{
|
| 3422 |
+
"epoch": 53.33,
|
| 3423 |
+
"eval_loss": 0.5990718007087708,
|
| 3424 |
+
"eval_runtime": 234.3903,
|
| 3425 |
+
"eval_samples_per_second": 24.353,
|
| 3426 |
+
"eval_steps_per_second": 3.046,
|
| 3427 |
+
"eval_wer": 0.32537082629662034,
|
| 3428 |
+
"step": 24000
|
| 3429 |
+
},
|
| 3430 |
+
{
|
| 3431 |
+
"epoch": 53.44,
|
| 3432 |
+
"learning_rate": 3.346415094339622e-05,
|
| 3433 |
+
"loss": 0.0284,
|
| 3434 |
+
"step": 24050
|
| 3435 |
+
},
|
| 3436 |
+
{
|
| 3437 |
+
"epoch": 53.56,
|
| 3438 |
+
"learning_rate": 3.289811320754717e-05,
|
| 3439 |
+
"loss": 0.0299,
|
| 3440 |
+
"step": 24100
|
| 3441 |
+
},
|
| 3442 |
+
{
|
| 3443 |
+
"epoch": 53.67,
|
| 3444 |
+
"learning_rate": 3.2332075471698106e-05,
|
| 3445 |
+
"loss": 0.0315,
|
| 3446 |
+
"step": 24150
|
| 3447 |
+
},
|
| 3448 |
+
{
|
| 3449 |
+
"epoch": 53.78,
|
| 3450 |
+
"learning_rate": 3.176603773584905e-05,
|
| 3451 |
+
"loss": 0.0323,
|
| 3452 |
+
"step": 24200
|
| 3453 |
+
},
|
| 3454 |
+
{
|
| 3455 |
+
"epoch": 53.89,
|
| 3456 |
+
"learning_rate": 3.119999999999999e-05,
|
| 3457 |
+
"loss": 0.0319,
|
| 3458 |
+
"step": 24250
|
| 3459 |
+
},
|
| 3460 |
+
{
|
| 3461 |
+
"epoch": 54.0,
|
| 3462 |
+
"learning_rate": 3.063396226415094e-05,
|
| 3463 |
+
"loss": 0.0301,
|
| 3464 |
+
"step": 24300
|
| 3465 |
+
},
|
| 3466 |
+
{
|
| 3467 |
+
"epoch": 54.11,
|
| 3468 |
+
"learning_rate": 3.0067924528301882e-05,
|
| 3469 |
+
"loss": 0.0297,
|
| 3470 |
+
"step": 24350
|
| 3471 |
+
},
|
| 3472 |
+
{
|
| 3473 |
+
"epoch": 54.22,
|
| 3474 |
+
"learning_rate": 2.9501886792452825e-05,
|
| 3475 |
+
"loss": 0.0322,
|
| 3476 |
+
"step": 24400
|
| 3477 |
+
},
|
| 3478 |
+
{
|
| 3479 |
+
"epoch": 54.22,
|
| 3480 |
+
"eval_loss": 0.6152312755584717,
|
| 3481 |
+
"eval_runtime": 234.7575,
|
| 3482 |
+
"eval_samples_per_second": 24.314,
|
| 3483 |
+
"eval_steps_per_second": 3.041,
|
| 3484 |
+
"eval_wer": 0.3252894378090219,
|
| 3485 |
+
"step": 24400
|
| 3486 |
+
},
|
| 3487 |
+
{
|
| 3488 |
+
"epoch": 54.33,
|
| 3489 |
+
"learning_rate": 2.893584905660377e-05,
|
| 3490 |
+
"loss": 0.0283,
|
| 3491 |
+
"step": 24450
|
| 3492 |
+
},
|
| 3493 |
+
{
|
| 3494 |
+
"epoch": 54.44,
|
| 3495 |
+
"learning_rate": 2.8369811320754715e-05,
|
| 3496 |
+
"loss": 0.0322,
|
| 3497 |
+
"step": 24500
|
| 3498 |
+
},
|
| 3499 |
+
{
|
| 3500 |
+
"epoch": 54.56,
|
| 3501 |
+
"learning_rate": 2.7803773584905658e-05,
|
| 3502 |
+
"loss": 0.0297,
|
| 3503 |
+
"step": 24550
|
| 3504 |
+
},
|
| 3505 |
+
{
|
| 3506 |
+
"epoch": 54.67,
|
| 3507 |
+
"learning_rate": 2.72377358490566e-05,
|
| 3508 |
+
"loss": 0.0291,
|
| 3509 |
+
"step": 24600
|
| 3510 |
+
},
|
| 3511 |
+
{
|
| 3512 |
+
"epoch": 54.78,
|
| 3513 |
+
"learning_rate": 2.6671698113207544e-05,
|
| 3514 |
+
"loss": 0.0323,
|
| 3515 |
+
"step": 24650
|
| 3516 |
+
},
|
| 3517 |
+
{
|
| 3518 |
+
"epoch": 54.89,
|
| 3519 |
+
"learning_rate": 2.6105660377358488e-05,
|
| 3520 |
+
"loss": 0.0305,
|
| 3521 |
+
"step": 24700
|
| 3522 |
+
},
|
| 3523 |
+
{
|
| 3524 |
+
"epoch": 55.0,
|
| 3525 |
+
"learning_rate": 2.553962264150943e-05,
|
| 3526 |
+
"loss": 0.0268,
|
| 3527 |
+
"step": 24750
|
| 3528 |
+
},
|
| 3529 |
+
{
|
| 3530 |
+
"epoch": 55.11,
|
| 3531 |
+
"learning_rate": 2.4973584905660374e-05,
|
| 3532 |
+
"loss": 0.0304,
|
| 3533 |
+
"step": 24800
|
| 3534 |
+
},
|
| 3535 |
+
{
|
| 3536 |
+
"epoch": 55.11,
|
| 3537 |
+
"eval_loss": 0.603844404220581,
|
| 3538 |
+
"eval_runtime": 234.1113,
|
| 3539 |
+
"eval_samples_per_second": 24.382,
|
| 3540 |
+
"eval_steps_per_second": 3.05,
|
| 3541 |
+
"eval_wer": 0.3228681303029686,
|
| 3542 |
+
"step": 24800
|
| 3543 |
+
},
|
| 3544 |
+
{
|
| 3545 |
+
"epoch": 55.22,
|
| 3546 |
+
"learning_rate": 2.440754716981132e-05,
|
| 3547 |
+
"loss": 0.0276,
|
| 3548 |
+
"step": 24850
|
| 3549 |
+
},
|
| 3550 |
+
{
|
| 3551 |
+
"epoch": 55.33,
|
| 3552 |
+
"learning_rate": 2.3841509433962263e-05,
|
| 3553 |
+
"loss": 0.0266,
|
| 3554 |
+
"step": 24900
|
| 3555 |
+
},
|
| 3556 |
+
{
|
| 3557 |
+
"epoch": 55.44,
|
| 3558 |
+
"learning_rate": 2.3275471698113207e-05,
|
| 3559 |
+
"loss": 0.0292,
|
| 3560 |
+
"step": 24950
|
| 3561 |
+
},
|
| 3562 |
+
{
|
| 3563 |
+
"epoch": 55.56,
|
| 3564 |
+
"learning_rate": 2.270943396226415e-05,
|
| 3565 |
+
"loss": 0.0316,
|
| 3566 |
+
"step": 25000
|
| 3567 |
+
},
|
| 3568 |
+
{
|
| 3569 |
+
"epoch": 55.67,
|
| 3570 |
+
"learning_rate": 2.2143396226415093e-05,
|
| 3571 |
+
"loss": 0.0288,
|
| 3572 |
+
"step": 25050
|
| 3573 |
+
},
|
| 3574 |
+
{
|
| 3575 |
+
"epoch": 55.78,
|
| 3576 |
+
"learning_rate": 2.1577358490566036e-05,
|
| 3577 |
+
"loss": 0.0293,
|
| 3578 |
+
"step": 25100
|
| 3579 |
+
},
|
| 3580 |
+
{
|
| 3581 |
+
"epoch": 55.89,
|
| 3582 |
+
"learning_rate": 2.101132075471698e-05,
|
| 3583 |
+
"loss": 0.0302,
|
| 3584 |
+
"step": 25150
|
| 3585 |
+
},
|
| 3586 |
+
{
|
| 3587 |
+
"epoch": 56.0,
|
| 3588 |
+
"learning_rate": 2.0456603773584902e-05,
|
| 3589 |
+
"loss": 0.0288,
|
| 3590 |
+
"step": 25200
|
| 3591 |
+
},
|
| 3592 |
+
{
|
| 3593 |
+
"epoch": 56.0,
|
| 3594 |
+
"eval_loss": 0.5989021062850952,
|
| 3595 |
+
"eval_runtime": 235.0378,
|
| 3596 |
+
"eval_samples_per_second": 24.285,
|
| 3597 |
+
"eval_steps_per_second": 3.038,
|
| 3598 |
+
"eval_wer": 0.32227806376788004,
|
| 3599 |
+
"step": 25200
|
| 3600 |
+
},
|
| 3601 |
+
{
|
| 3602 |
+
"epoch": 56.11,
|
| 3603 |
+
"learning_rate": 1.9890566037735846e-05,
|
| 3604 |
+
"loss": 0.0309,
|
| 3605 |
+
"step": 25250
|
| 3606 |
+
},
|
| 3607 |
+
{
|
| 3608 |
+
"epoch": 56.22,
|
| 3609 |
+
"learning_rate": 1.9324528301886792e-05,
|
| 3610 |
+
"loss": 0.0277,
|
| 3611 |
+
"step": 25300
|
| 3612 |
+
},
|
| 3613 |
+
{
|
| 3614 |
+
"epoch": 56.33,
|
| 3615 |
+
"learning_rate": 1.8758490566037735e-05,
|
| 3616 |
+
"loss": 0.031,
|
| 3617 |
+
"step": 25350
|
| 3618 |
+
},
|
| 3619 |
+
{
|
| 3620 |
+
"epoch": 56.44,
|
| 3621 |
+
"learning_rate": 1.819245283018868e-05,
|
| 3622 |
+
"loss": 0.0276,
|
| 3623 |
+
"step": 25400
|
| 3624 |
+
},
|
| 3625 |
+
{
|
| 3626 |
+
"epoch": 56.56,
|
| 3627 |
+
"learning_rate": 1.762641509433962e-05,
|
| 3628 |
+
"loss": 0.0273,
|
| 3629 |
+
"step": 25450
|
| 3630 |
+
},
|
| 3631 |
+
{
|
| 3632 |
+
"epoch": 56.67,
|
| 3633 |
+
"learning_rate": 1.7060377358490565e-05,
|
| 3634 |
+
"loss": 0.028,
|
| 3635 |
+
"step": 25500
|
| 3636 |
+
},
|
| 3637 |
+
{
|
| 3638 |
+
"epoch": 56.78,
|
| 3639 |
+
"learning_rate": 1.6494339622641508e-05,
|
| 3640 |
+
"loss": 0.0287,
|
| 3641 |
+
"step": 25550
|
| 3642 |
+
},
|
| 3643 |
+
{
|
| 3644 |
+
"epoch": 56.89,
|
| 3645 |
+
"learning_rate": 1.592830188679245e-05,
|
| 3646 |
+
"loss": 0.0307,
|
| 3647 |
+
"step": 25600
|
| 3648 |
+
},
|
| 3649 |
+
{
|
| 3650 |
+
"epoch": 56.89,
|
| 3651 |
+
"eval_loss": 0.5922682285308838,
|
| 3652 |
+
"eval_runtime": 236.4109,
|
| 3653 |
+
"eval_samples_per_second": 24.144,
|
| 3654 |
+
"eval_steps_per_second": 3.02,
|
| 3655 |
+
"eval_wer": 0.32016196309032086,
|
| 3656 |
+
"step": 25600
|
| 3657 |
+
},
|
| 3658 |
+
{
|
| 3659 |
+
"epoch": 57.0,
|
| 3660 |
+
"learning_rate": 1.5362264150943397e-05,
|
| 3661 |
+
"loss": 0.027,
|
| 3662 |
+
"step": 25650
|
| 3663 |
+
},
|
| 3664 |
+
{
|
| 3665 |
+
"epoch": 57.11,
|
| 3666 |
+
"learning_rate": 1.4796226415094337e-05,
|
| 3667 |
+
"loss": 0.0277,
|
| 3668 |
+
"step": 25700
|
| 3669 |
+
},
|
| 3670 |
+
{
|
| 3671 |
+
"epoch": 57.22,
|
| 3672 |
+
"learning_rate": 1.423018867924528e-05,
|
| 3673 |
+
"loss": 0.0265,
|
| 3674 |
+
"step": 25750
|
| 3675 |
+
},
|
| 3676 |
+
{
|
| 3677 |
+
"epoch": 57.33,
|
| 3678 |
+
"learning_rate": 1.3664150943396225e-05,
|
| 3679 |
+
"loss": 0.0266,
|
| 3680 |
+
"step": 25800
|
| 3681 |
+
},
|
| 3682 |
+
{
|
| 3683 |
+
"epoch": 57.44,
|
| 3684 |
+
"learning_rate": 1.3098113207547168e-05,
|
| 3685 |
+
"loss": 0.0277,
|
| 3686 |
+
"step": 25850
|
| 3687 |
+
},
|
| 3688 |
+
{
|
| 3689 |
+
"epoch": 57.56,
|
| 3690 |
+
"learning_rate": 1.2532075471698111e-05,
|
| 3691 |
+
"loss": 0.0246,
|
| 3692 |
+
"step": 25900
|
| 3693 |
+
},
|
| 3694 |
+
{
|
| 3695 |
+
"epoch": 57.67,
|
| 3696 |
+
"learning_rate": 1.1966037735849054e-05,
|
| 3697 |
+
"loss": 0.0278,
|
| 3698 |
+
"step": 25950
|
| 3699 |
+
},
|
| 3700 |
+
{
|
| 3701 |
+
"epoch": 57.78,
|
| 3702 |
+
"learning_rate": 1.14e-05,
|
| 3703 |
+
"loss": 0.0258,
|
| 3704 |
+
"step": 26000
|
| 3705 |
+
},
|
| 3706 |
+
{
|
| 3707 |
+
"epoch": 57.78,
|
| 3708 |
+
"eval_loss": 0.6004139184951782,
|
| 3709 |
+
"eval_runtime": 234.8842,
|
| 3710 |
+
"eval_samples_per_second": 24.301,
|
| 3711 |
+
"eval_steps_per_second": 3.04,
|
| 3712 |
+
"eval_wer": 0.31922599548293895,
|
| 3713 |
+
"step": 26000
|
| 3714 |
+
},
|
| 3715 |
+
{
|
| 3716 |
+
"epoch": 57.89,
|
| 3717 |
+
"learning_rate": 1.0833962264150942e-05,
|
| 3718 |
+
"loss": 0.0252,
|
| 3719 |
+
"step": 26050
|
| 3720 |
+
},
|
| 3721 |
+
{
|
| 3722 |
+
"epoch": 58.0,
|
| 3723 |
+
"learning_rate": 1.0267924528301886e-05,
|
| 3724 |
+
"loss": 0.027,
|
| 3725 |
+
"step": 26100
|
| 3726 |
+
},
|
| 3727 |
+
{
|
| 3728 |
+
"epoch": 58.11,
|
| 3729 |
+
"learning_rate": 9.701886792452829e-06,
|
| 3730 |
+
"loss": 0.0277,
|
| 3731 |
+
"step": 26150
|
| 3732 |
+
},
|
| 3733 |
+
{
|
| 3734 |
+
"epoch": 58.22,
|
| 3735 |
+
"learning_rate": 9.135849056603773e-06,
|
| 3736 |
+
"loss": 0.0237,
|
| 3737 |
+
"step": 26200
|
| 3738 |
+
},
|
| 3739 |
+
{
|
| 3740 |
+
"epoch": 58.33,
|
| 3741 |
+
"learning_rate": 8.569811320754717e-06,
|
| 3742 |
+
"loss": 0.0232,
|
| 3743 |
+
"step": 26250
|
| 3744 |
+
},
|
| 3745 |
+
{
|
| 3746 |
+
"epoch": 58.44,
|
| 3747 |
+
"learning_rate": 8.00377358490566e-06,
|
| 3748 |
+
"loss": 0.028,
|
| 3749 |
+
"step": 26300
|
| 3750 |
+
},
|
| 3751 |
+
{
|
| 3752 |
+
"epoch": 58.56,
|
| 3753 |
+
"learning_rate": 7.437735849056603e-06,
|
| 3754 |
+
"loss": 0.0293,
|
| 3755 |
+
"step": 26350
|
| 3756 |
+
},
|
| 3757 |
+
{
|
| 3758 |
+
"epoch": 58.67,
|
| 3759 |
+
"learning_rate": 6.871698113207546e-06,
|
| 3760 |
+
"loss": 0.0261,
|
| 3761 |
+
"step": 26400
|
| 3762 |
+
},
|
| 3763 |
+
{
|
| 3764 |
+
"epoch": 58.67,
|
| 3765 |
+
"eval_loss": 0.5958569049835205,
|
| 3766 |
+
"eval_runtime": 234.8641,
|
| 3767 |
+
"eval_samples_per_second": 24.303,
|
| 3768 |
+
"eval_steps_per_second": 3.04,
|
| 3769 |
+
"eval_wer": 0.3189004415325452,
|
| 3770 |
+
"step": 26400
|
| 3771 |
+
},
|
| 3772 |
+
{
|
| 3773 |
+
"epoch": 58.78,
|
| 3774 |
+
"learning_rate": 6.30566037735849e-06,
|
| 3775 |
+
"loss": 0.0293,
|
| 3776 |
+
"step": 26450
|
| 3777 |
+
},
|
| 3778 |
+
{
|
| 3779 |
+
"epoch": 58.89,
|
| 3780 |
+
"learning_rate": 5.739622641509433e-06,
|
| 3781 |
+
"loss": 0.0278,
|
| 3782 |
+
"step": 26500
|
| 3783 |
+
},
|
| 3784 |
+
{
|
| 3785 |
+
"epoch": 59.0,
|
| 3786 |
+
"learning_rate": 5.173584905660377e-06,
|
| 3787 |
+
"loss": 0.0262,
|
| 3788 |
+
"step": 26550
|
| 3789 |
+
},
|
| 3790 |
+
{
|
| 3791 |
+
"epoch": 59.11,
|
| 3792 |
+
"learning_rate": 4.60754716981132e-06,
|
| 3793 |
+
"loss": 0.025,
|
| 3794 |
+
"step": 26600
|
| 3795 |
+
},
|
| 3796 |
+
{
|
| 3797 |
+
"epoch": 59.22,
|
| 3798 |
+
"learning_rate": 4.041509433962263e-06,
|
| 3799 |
+
"loss": 0.0286,
|
| 3800 |
+
"step": 26650
|
| 3801 |
+
},
|
| 3802 |
+
{
|
| 3803 |
+
"epoch": 59.33,
|
| 3804 |
+
"learning_rate": 3.4754716981132073e-06,
|
| 3805 |
+
"loss": 0.0295,
|
| 3806 |
+
"step": 26700
|
| 3807 |
+
},
|
| 3808 |
+
{
|
| 3809 |
+
"epoch": 59.44,
|
| 3810 |
+
"learning_rate": 2.909433962264151e-06,
|
| 3811 |
+
"loss": 0.0249,
|
| 3812 |
+
"step": 26750
|
| 3813 |
+
},
|
| 3814 |
+
{
|
| 3815 |
+
"epoch": 59.56,
|
| 3816 |
+
"learning_rate": 2.343396226415094e-06,
|
| 3817 |
+
"loss": 0.0277,
|
| 3818 |
+
"step": 26800
|
| 3819 |
+
},
|
| 3820 |
+
{
|
| 3821 |
+
"epoch": 59.56,
|
| 3822 |
+
"eval_loss": 0.593723475933075,
|
| 3823 |
+
"eval_runtime": 234.2801,
|
| 3824 |
+
"eval_samples_per_second": 24.364,
|
| 3825 |
+
"eval_steps_per_second": 3.048,
|
| 3826 |
+
"eval_wer": 0.318188292266059,
|
| 3827 |
+
"step": 26800
|
| 3828 |
+
}
|
| 3829 |
+
],
|
| 3830 |
+
"max_steps": 27000,
|
| 3831 |
+
"num_train_epochs": 60,
|
| 3832 |
+
"total_flos": 1.1861566534187504e+20,
|
| 3833 |
+
"trial_name": null,
|
| 3834 |
+
"trial_params": null
|
| 3835 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dafdf73917d65f6586d3cb1852d033f8740cd2b08fb2897a59ae4a845add7384
|
| 3 |
+
size 2927
|
vocab.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"e": 0, "n": 1, "a": 2, "i": 3, "t": 4, "o": 5, "d": 6, "r": 7, " ": 8, "l": 9, "s": 10, "h": 11, "g": 12, "m": 13, "k": 14, "v": 15, "j": 16, "w": 17, "z": 18, "u": 19, "b": 20, "c": 21, "p": 22, "f": 23, "y": 24, "é": 25, "'": 26, "x": 27, "ë": 28, "q": 29, "-": 30, "ê": 31, "à": 32, "ä": 33, "è": 34, "ï": 35, "â": 36, "û": 37, "ö": 38, "ô": 39, "ü": 40, "î": 41, "ç": 42, "æ": 43, "ù": 44, "œ": 45, "<unk>": 46, "<pad>": 47}
|