--- library_name: transformers language: - ro license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - IoanaLiviaPopescu/RealVoiceSynthVoice-800-1-Standard-B metrics: - wer model-index: - name: IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-800-1-Standard-B-whisper-small-v0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IoanaLiviaPopescu/RealVoiceSynthVoice-800-1-Standard-B type: IoanaLiviaPopescu/RealVoiceSynthVoice-800-1-Standard-B config: default split: test args: 'split: validation' metrics: - name: Wer type: wer value: 17.517978978425226 --- # IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-800-1-Standard-B-whisper-small-v0 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IoanaLiviaPopescu/RealVoiceSynthVoice-800-1-Standard-B dataset. It achieves the following results on the evaluation set: - Loss: 0.3794 - Wer: 17.5180 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0 | 0 | 0.6024 | 27.8812 | | 0.3199 | 1.0 | 38 | 0.4198 | 18.3293 | | 0.1321 | 2.0 | 76 | 0.3836 | 17.8130 | | 0.0735 | 3.0 | 114 | 0.3794 | 17.5180 | | 0.0457 | 4.0 | 152 | 0.3961 | 17.7024 | | 0.0331 | 5.0 | 190 | 0.4020 | 17.7761 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1