IoanaLiviaPopescu's picture
End of training
d457c15 verified
metadata
library_name: transformers
language:
  - ro
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - IoanaLiviaPopescu/RealVoiceSynthVoice-400-2-Wavnet-B
metrics:
  - wer
model-index:
  - name: >-
      IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-400-2-Wavnet-B-Wavnet-B-whisper-small-v0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: IoanaLiviaPopescu/RealVoiceSynthVoice-400-2-Wavnet-B
          type: IoanaLiviaPopescu/RealVoiceSynthVoice-400-2-Wavnet-B
          config: default
          split: test
          args: 'split: validation'
        metrics:
          - name: Wer
            type: wer
            value: 17.88677853586576

IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-400-2-Wavnet-B-Wavnet-B-whisper-small-v0

This model is a fine-tuned version of openai/whisper-small on the IoanaLiviaPopescu/RealVoiceSynthVoice-400-2-Wavnet-B dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3999
  • Wer: 17.8868

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0 0 0.6024 27.8812
0.3857 1.0 26 0.4413 19.5095
0.1796 2.0 52 0.3877 17.9974
0.1036 3.0 78 0.3856 18.1818
0.0699 4.0 104 0.3975 17.9237
0.0539 5.0 130 0.3999 17.8868

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1