Create handler.py
Browse files- handler.py +38 -0
handler.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, List
|
| 2 |
+
|
| 3 |
+
from fastrag.rankers import QuantizedBiEncoderRanker
|
| 4 |
+
from fastrag.retrievers import QuantizedBiEncoderRetriever
|
| 5 |
+
from haystack import Pipeline
|
| 6 |
+
from haystack.document_stores import InMemoryDocumentStore
|
| 7 |
+
from haystack.schema import Document
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class EndpointHandler:
|
| 11 |
+
def __init__(self, path=""):
|
| 12 |
+
EXAMPLES = [
|
| 13 |
+
"There is a blue house on Oxford Street.",
|
| 14 |
+
"Paris is the capital of France.",
|
| 15 |
+
"The first commit in fastRAG was in 2022",
|
| 16 |
+
]
|
| 17 |
+
document_store = InMemoryDocumentStore(use_gpu=False, use_bm25=False, embedding_dim=384, return_embedding=True)
|
| 18 |
+
|
| 19 |
+
documents = []
|
| 20 |
+
for i, d in enumerate(EXAMPLES):
|
| 21 |
+
documents.append(Document(content=d, id=i))
|
| 22 |
+
|
| 23 |
+
document_store.write_documents(documents)
|
| 24 |
+
|
| 25 |
+
model_id = "Intel/bge-small-en-v1.5-rag-int8-static"
|
| 26 |
+
retriever = QuantizedBiEncoderRetriever(document_store=document_store, embedding_model=model_id)
|
| 27 |
+
document_store.update_embeddings(retriever=retriever)
|
| 28 |
+
|
| 29 |
+
ranker = QuantizedBiEncoderRanker("Intel/bge-large-en-v1.5-rag-int8-static")
|
| 30 |
+
|
| 31 |
+
self.pipe = Pipeline()
|
| 32 |
+
self.pipe.add_node(component=retriever, name="retriever", inputs=["Query"])
|
| 33 |
+
self.pipe.add_node(component=ranker, name="ranker", inputs=["retriever"])
|
| 34 |
+
|
| 35 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 36 |
+
query = data.pop("inputs", data)
|
| 37 |
+
results = self.pipe.run(query=query)
|
| 38 |
+
return results
|